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Introduction

Inequalities are useful in all fields of Mathematics. The aim of this problem-oriented book is to
present elementary techniques in the theory of inequalities. The readers will meet classical theorems
including Schur’s inequality, Muirhead’s theorem, the Cauchy-Schwarz inequality, the Power Mean
inequality, the AM-GM inequality, and Hölder’s theorem. I would greatly appreciate hearing about
comments and corrections from my readers. You can send email to me at ultrametric@gmail.com

To Students

My target readers are challenging high schools students and undergraduate students. The given
techniques in this book are just the tip of the inequalities iceberg. Young students should find their
own methods to attack various problems. A great Hungarian Mathematician Paul Erdös was fond
of saying that God has a transfinite book with all the theorems and their best proofs. I strongly
encourage readers to send me their own creative solutions of the problems in this book. Have fun!
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Chapter 1

Geometric Inequalities

It gives me the same pleasure when someone else proves a good theorem as when I do it myself. E. Landau

1.1 Ravi Substitution

Many inequalities are simplified by some suitable substitutions. We begin with a classical inequality
in triangle geometry. What is the first1 nontrivial geometric inequality ? In 1746, Chapple showed
that

Theorem 1.1.1. (Chapple 1746, Euler 1765) Let R and r denote the radii of the circumcircle
and incircle of the triangle ABC. Then, we have R ≥ 2r and the equality holds if and only if ABC
is equilateral.

Proof. Let BC = a, CA = b, AB = c, s = a+b+c
2 and S = [ABC].2 Recall the well-known identities

: S = abc
4R , S = rs, S2 = s(s−a)(s−b)(s−c). Hence, R ≥ 2r is equivalent to abc

4S ≥ 2Ss or abc ≥ 8S
2

s
or abc ≥ 8(s− a)(s− b)(s− c). We need to prove the following.

Theorem 1.1.2. ([AP], A. Padoa) Let a, b, c be the lengths of a triangle. Then, we have

abc ≥ 8(s− a)(s− b)(s− c) or abc ≥ (b+ c− a)(c+ a− b)(a+ b− c)

and the equality holds if and only if a = b = c.

Proof. We use the Ravi Substitution : Since a, b, c are the lengths of a triangle, there are positive
reals x, y, z such that a = y + z, b = z + x, c = x + y. (Why?) Then, the inequality is
(y + z)(z + x)(x+ y) ≥ 8xyz for x, y, z > 0. However, we get

(y + z)(z + x)(x+ y)− 8xyz = x(y − z)2 + y(z − x)2 + z(x− y)2 ≥ 0.

Exercise 1. Let ABC be a right triangle. Show that

R ≥ (1 +
√

2)r.

When does the equality hold ?
1The first geometric inequality is the Triangle Inequality : AB +BC ≥ AC
2In this book, [P ] stands for the area of the polygon P .
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It’s natural to ask that the inequality in the theorem 2 holds for arbitrary positive reals a, b,
c? Yes ! It’s possible to prove the inequality without the additional condition that a, b, c are the
lengths of a triangle :

Theorem 1.1.3. Let x, y, z > 0. Then, we have xyz ≥ (y + z − x)(z + x − y)(x + y − z). The
equality holds if and only if x = y = z.

Proof. Since the inequality is symmetric in the variables, without loss of generality, we may assume
that x ≥ y ≥ z. Then, we have x+ y > z and z + x > y. If y + z > x, then x, y, z are the lengths
of the sides of a triangle. In this case, by the theorem 2, we get the result. Now, we may assume
that y + z ≤ x. Then, xyz > 0 ≥ (y + z − x)(z + x− y)(x+ y − z).

The inequality in the theorem 2 holds when some of x, y, z are zeros :

Theorem 1.1.4. Let x, y, z ≥ 0. Then, we have xyz ≥ (y + z − x)(z + x− y)(x+ y − z).
Proof. Since x, y, z ≥ 0, we can find positive sequences {xn}, {yn}, {zn} for which

lim
n→∞xn = x, lim

n→∞ yn = y, lim
n→∞ zn = z.

Applying the theorem 2 yields

xnynzn ≥ (yn + zn − xn)(zn + xn − yn)(xn + yn − zn).

Now, taking the limits to both sides, we get the result.

Clearly, the equality holds when x = y = z. However, xyz = (y + z − x)(z + x − y)(x + y − z)
and x, y, z ≥ 0 does not guarantee that x = y = z. In fact, for x, y, z ≥ 0, the equality
xyz = (y + z − x)(z + x− y)(x+ y − z) is equivalent to

x = y = z or x = y, z = 0 or y = z, x = 0 or z = x, y = 0.

It’s straightforward to verify the equality

xyz − (y + z − x)(z + x− y)(x+ y − z) = x(x− y)(x− z) + y(y − z)(y − x) + z(z − x)(z − y).

Hence, the theorem 4 is a particular case of Schur’s inequality.

Problem 1. (IMO 2000/2, Proposed by Titu Andreescu) Let a, b, c be positive numbers such
that abc = 1. Prove that

(
a− 1 +

1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
≤ 1.

First Solution. Since abc = 1, we make the substitution a = x
y , b = y

z , c = z
x for x, y, z > 0.3 We

rewrite the given inequality in the terms of x, y, z :
(
x

y
− 1 +

z

y

)(y
z
− 1 +

x

z

)( z
x
− 1 +

y

x

)
≤ 1 ⇔ xyz ≥ (y + z − x)(z + x− y)(x+ y − z).

3For example, take x = 1, y = 1
a

, z = 1
ab

.
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The Ravi Substitution is useful for inequalities for the lengths a, b, c of a triangle. After the
Ravi Substitution, we can remove the condition that they are the lengths of the sides of a triangle.

Problem 2. (IMO 1983/6) Let a, b, c be the lengths of the sides of a triangle. Prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

First Solution. After setting a = y + z, b = z + x, c = x+ y for x, y, z > 0, it becomes

x3z + y3x+ z3y ≥ x2yz + xy2z + xyz2 or
x2

y
+
y2

z
+
z2

x
≥ x+ y + z,

which follows from the Cauchy-Schwarz inequality

(y + z + x)
(
x2

y
+
y2

z
+
z2

x

)
≥ (x+ y + z)2.

Exercise 2. Let a, b, c be the lengths of a triangle. Show that

a

b+ c
+

b

c+ a
+

c

a+ b
< 2.

Exercise 3. (Darij Grinberg) Let a, b, c be the lengths of a triangle. Show the inequalities

a3 + b3 + c3 + 3abc− 2b2a− 2c2b− 2a2c ≥ 0,

and
3a2b+ 3b2c+ 3c2a− 3abc− 2b2a− 2c2b− 2a2c ≥ 0.

We now discuss Weitzenböck’s inequality and related inequalities.

Problem 3. (IMO 1961/2, Weitzenböck’s inequality) Let a, b, c be the lengths of a triangle
with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Solution. Write a = y + z, b = z + x, c = x+ y for x, y, z > 0. It’s equivalent to

((y + z)2 + (z + x)2 + (x+ y)2)2 ≥ 48(x+ y + z)xyz,

which can be obtained as following :

((y + z)2 + (z + x)2 + (x+ y)2)2 ≥ 16(yz + zx+ xy)2 ≥ 16 · 3(xy · yz + yz · zx+ xy · yz).
Here, we used the well-known inequalities p2 + q2 ≥ 2pq and (p+ q + r)2 ≥ 3(pq + qr + rp).

Theorem 1.1.5. (Hadwiger-Finsler inequality) For any triangle ABC with sides a, b, c and
area F , the following inequality holds.

2ab+ 2bc+ 2ca− (a2 + b2 + c2) ≥ 4
√

3F.

First Proof. After the substitution a = y + z, b = z + x, c = x+ y, where x, y, z > 0, it becomes

xy + yz + zx ≥
√

3xyz(x+ y + z),

which follows from the identity

(xy + yz + zx)2 − 3xyz(x+ y + z) =
(xy − yz)2 + (yz − zx)2 + (zx− xy)2

2
.
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Second Proof. We give a convexity proof. There are many ways to deduce the following identity:

2ab+ 2bc+ 2ca− (a2 + b2 + c2)
4F

= tan
A

2
+ tan

B

2
+ tan

C

2
.

Since tanx is convex on
(
0, π2

)
, Jensen’s inequality shows that

2ab+ 2bc+ 2ca− (a2 + b2 + c2)
4F

≥ 3 tan

(
A
2 + B

2 + C
2

3

)
=
√

3.

Tsintsifas proved a simultaneous generalization of Weitzenböck’s inequality and Nesbitt’s in-
equality.

Theorem 1.1.6. (Tsintsifas) Let p, q, r be positive real numbers and let a, b, c denote the sides of
a triangle with area F . Then, we have

p

q + r
a2 +

q

r + p
b2 +

r

p+ q
c2 ≥ 2

√
3F.

Proof. (V. Pambuccian) By Hadwiger-Finsler inequality, it suffices to show that

p

q + r
a2 +

q

r + p
b2 +

r

p+ q
c2 ≥ 1

2
(a+ b+ c)2 − (a2 + b2 + c2)

or (
p+ q + r

q + r

)
a2 +

(
p+ q + r

r + p

)
b2 +

(
p+ q + r

p+ q

)
c2 ≥ 1

2
(a+ b+ c)2

or

((q + r) + (r + p) + (p+ q))
(

1
q + r

a2 +
1

r + p
b2 +

1
p+ q

c2

)
≥ (a+ b+ c)2 .

However, this is a straightforward consequence of the Cauchy-Schwarz inequality.

Theorem 1.1.7. (Neuberg-Pedoe inequality) Let a1, b1, c1 denote the sides of the triangle
A1B1C1 with area F1. Let a2, b2, c2 denote the sides of the triangle A2B2C2 with area F2. Then,
we have

a1
2(b22 + c2

2 − a2
2) + b1

2(c2
2 + a2

2 − b22) + c1
2(a2

2 + b2
2 − c2

2) ≥ 16F1F2.

Notice that it’s a generalization of Weitzenböck’s inequality.(Why?) In [GC], G. Chang proved
Neuberg-Pedoe inequality by using complex numbers. For very interesting geometric observations
and proofs of Neuberg-Pedoe inequality, see [DP] or [GI, pp.92-93]. Here, we offer three algebraic
proofs.

Lemma 1.1.1.

a1
2(a2

2 + b2
2 − c2

2) + b1
2(b22 + c2

2 − a2
2) + c1

2(c2
2 + a2

2 − b22) > 0.

Proof. Observe that it’s equivalent to

(a1
2 + b1

2 + c1
2)(a2

2 + b2
2 + c2

2) > 2(a1
2a2

2 + b1
2b2

2 + c1
2c2

2).

From Heron’s formula, we find that, for i = 1, 2,

16Fi2 = (ai2 + bi
2 + ci

2)2 − 2(ai4 + bi
4 + ci

4) > 0 or ai
2 + bi

2 + ci
2 >

√
2(ai4 + bi

4 + ci4) .

4



The Cauchy-Schwarz inequality implies that

(a1
2+b12+c1

2)(a2
2+b22+c2

2) > 2
√

(a1
4 + b1

4 + c1
4)(a2

4 + b2
4 + c2

4) ≥ 2(a1
2a2

2+b12b2
2+c1

2c2
2).

First Proof. ([LC1], Carlitz) By the lemma, we obtain

L = a1
2(b22 + c2

2 − a2
2) + b1

2(c2
2 + a2

2 − b22) + c1
2(a2

2 + b2
2 − c2

2) > 0,

Hence, we need to show that
L2 − (16F1

2)(16F2
2) ≥ 0.

One may easily check the following identity

L2 − (16F1
2)(16F2

2) = −4(UV + VW +WU),

where
U = b1

2c2
2 − b22c1

2, V = c1
2a2

2 − c2
2a1

2 and W = a1
2b2

2 − a2
2b1

2.

Using the identity

a1
2U + b1

2V + c1
2W = 0 or W = −a1

2

c1
2
U − b1

2

c1
2
V,

one may also deduce that

UV + VW +WU = −a1
2

c1
2

(
U − c1

2 − a1
2 − b12

2a1
2

V

)2

− 4a1
2b1

2 − (c1
2 − a1

2 − b12)2

4a1
2c1

2
V 2.

It follows that

UV + VW +WU = −a1
2

c1
2

(
U − c1

2 − a1
2 − b12

2a1
2

V

)2

− 16F1
2

4a1
2c1

2
V 2 ≤ 0.

Carlitz also observed that the Neuberg-Pedoe inequality can be deduced from Aczél’s inequality.

Theorem 1.1.8. (Aczél’s inequality) Let a1, · · · , an, b1, · · · , bn be positive real numbers satisfying

a1
2 ≥ a2

2 + · · ·+ an
2 and b1

2 ≥ b22 + · · ·+ bn
2.

Then, the following inequality holds.

a1b1 − (a2b2 + · · ·+ anbn) ≥
√

(a1
2 − (a2

2 + · · ·+ an2))
(
b1

2 − (b22 + · · ·+ bn
2
))

Proof. ([AI]) The Cauchy-Schwarz inequality shows that

a1b1 ≥
√

(a2
2 + · · ·+ an2)(b22 + · · ·+ bn

2) ≥ a2b2 + · · ·+ anbn.

Then, the above inequality is equivalent to

(a1b1 − (a2b2 + · · ·+ anbn))2 ≥ (a1
2 − (a2

2 + · · ·+ an
2
)) (

b1
2 − (b22 + · · ·+ bn

2
))
.
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In case a1
2−(a2

2 + · · ·+an2) = 0, it’s trivial. Hence, we now assume that a1
2−(a2

2 + · · ·+an2) > 0.
The main trick is to think of the following quadratic polynomial

P (x) = (a1x−b1)2−
n∑

i=2

(aix−bi)2 =

(
a1

2 −
n∑

i=2

ai
2

)
x2 +2

(
a1b1 −

n∑

i=2

aibi

)
x+

(
b1

2 −
n∑

i=2

bi
2

)
.

Since P ( b1a1
) = −∑n

i=2

(
ai

(
b1
a1

)
− bi

)2
≤ 0 and since the coefficient of x2 in the quadratic polyno-

mial P is positive, P should have at least one real root. Therefore, P has nonnegative discriminant.
It follows that

(
2

(
a1b1 −

n∑

i=2

aibi

))2

− 4

(
a1

2 −
n∑

i=2

ai
2

)(
b1

2 −
n∑

i=2

bi
2

)
≥ 0.

Second Proof of Neuberg-Pedoe inequality. ([LC2], Carlitz) We rewrite it in terms of a1, b1, c1, a2, b2, c2:

(a1
2 + b1

2 + c1
2)(a2

2 + b2
2 + c2

2)− 2(a1
2a2

2 + b1
2b2

2 + c1
2c2

2)

≥
√((

a1
2 + b1

2 + c1
2
)2 − 2(a1

4 + b1
4 + c1

4)
)((

a2
2 + b2

2 + c2
2
)2 − 2(a2

4 + b2
4 + c2

4)
)
.

We employ the following substitutions

x1 = a1
2 + b1

2 + c1
2, x2 =

√
2 a1

2, x3 =
√

2 b12, x4 =
√

2 c1
2,

y1 = a2
2 + b2

2 + c2
2, y2 =

√
2 a2

2, y3 =
√

2 b22, y4 =
√

2 c2
2.

As in the proof of the lemma 5, we have

x1
2 > x2

2 + y3
2 + x4

2 and y1
2 > y2

2 + y3
2 + y4

2.

We now apply Aczél’s inequality to get the inequality

x1y1 − x2y2 − x3y3 − x4y4 ≥
√

(x1
2 − (x2

2 + y3
2 + x4

2)) (y1
2 − (y2

2 + y3
2 + y4

2)).

We close this section with a very simple proof by a former student in KMO4 summer program.

Third Proof. Toss two triangles 4A1B1C1 and 4A2B2C2 on R2:

A1(0, p1), B1(p2, 0), C1(p3, 0), A2(0, q1), B2(q2, 0), and C2(q3, 0).

It therefore follows from the inequality x2 + y2 ≥ 2|xy| that

a1
2(b22 + c2

2 − a2
2) + b1

2(c2
2 + a2

2 − b22) + c1
2(a2

2 + b2
2 − c2

2)
= (p3 − p2)2(2q1

2 + 2q1q2) + (p1
2 + p3

2)(2q2
2 − 2q2q3) + (p1

2 + p2
2)(2q3

2 − 2q2q3)
= 2(p3 − p2)2q1

2 + 2(q3 − q2)2p1
2 + 2(p3q2 − p2q3)2

≥ 2((p3 − p2)q1)2 + 2((q3 − q2)p1)2

≥ 4|(p3 − p2)q1| · |(q3 − q2)p1|
= 16F1F2 .

4Korean Mathematical Olympiads
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1.2 Trigonometric Methods

In this section, we employ trigonometric methods to attack geometric inequalities.

Theorem 1.2.1. (Erdös-Mordell Theorem) If from a point P inside a given triangle ABC
perpendiculars PH1, PH2, PH3 are drawn to its sides, then PA+PB+PC ≥ 2(PH1+PH2+PH3).

This was conjectured by Paul Erdös in 1935, and first proved by Mordell in the same year.
Several proofs of this inequality have been given, using Ptolemy’s theorem by André Avez, angular
computations with similar triangles by Leon Bankoff, area inequality by V. Komornik, or using
trigonometry by Mordell and Barrow.

Proof. ([MB], Mordell) We transform it to a trigonometric inequality. Let h1 = PH1, h2 = PH2

and h3 = PH3. Apply the Since Law and the Cosine Law to obtain

PA sinA = H2H3 =
√
h2

2 + h3
2 − 2h2h3 cos(π −A),

PB sinB = H3H1 =
√
h3

2 + h1
2 − 2h3h1 cos(π −B),

PC sinC = H1H2 =
√
h1

2 + h2
2 − 2h1h2 cos(π − C).

So, we need to prove that

∑

cyclic

1
sinA

√
h2

2 + h3
2 − 2h2h3 cos(π −A) ≥ 2(h1 + h2 + h3).

The main trouble is that the left hand side has too heavy terms with square root expressions. Our
strategy is to find a lower bound without square roots. To this end, we express the terms inside
the square root as the sum of two squares.

H2H3
2 = h2

2 + h3
2 − 2h2h3 cos(π −A)

= h2
2 + h3

2 − 2h2h3 cos(B + C)
= h2

2 + h3
2 − 2h2h3(cosB cosC − sinB sinC).

Using cos2B + sin2B = 1 and cos2C + sin2C = 1, one finds that

H2H3
2 = (h2 sinC + h3 sinB)2 + (h2 cosC − h3 cosB)2 .

Since (h2 cosC − h3 cosB)2 is clearly nonnegative, we get H2H3 ≥ h2 sinC + h3 sinB. It follows
that

∑

cyclic

√
h2

2 + h3
2 − 2h2h3 cos(π −A)

sinA
≥

∑

cyclic

h2 sinC + h3 sinB
sinA

=
∑

cyclic

(
sinB
sinC

+
sinC
sinB

)
h1

≥
∑

cyclic

2

√
sinB
sinC

· sinC
sinB

h1

= 2h1 + 2h2 + 2h3.
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We use the same techniques to attack the following geometric inequality.

Problem 4. (IMO Short-list 2005) In an acute triangle ABC, let D, E, F , P , Q, R be the feet
of perpendiculars from A, B, C, A, B, C to BC, CA, AB, EF , FD, DE, respectively. Prove that

p(ABC)p(PQR) ≥ p(DEF )2,

where p(T ) denotes the perimeter of triangle T .

Solution. Let’s euler5 this problem. Let ρ be the circumradius of the triangle ABC. It’s easy
to show that BC = 2ρ sinA and EF = 2ρ sinA cosA. Since DQ = 2ρ sinC cosB cosA, DR =
2ρ sinB cosC cosA, and ∠FDE = π − 2A, the Cosine Law gives us

QR2 = DQ2 +DR2 − 2DQ ·DR cos(π − 2A)

= 4ρ2 cos2A
[
(sinC cosB)2 + (sinB cosC)2 + 2 sinC cosB sinB cosC cos(2A)

]

or
QR = 2ρ cosA

√
f(A,B,C),

where

f(A,B,C) = (sinC cosB)2 + (sinB cosC)2 + 2 sinC cosB sinB cosC cos(2A).

So, what we need to attack is the following inequality:

∑

cyclic

2ρ sinA




∑

cyclic

2ρ cosA
√
f(A,B,C)


 ≥


∑

cyclic

2ρ sinA cosA




2

or 
∑

cyclic

sinA




∑

cyclic

cosA
√
f(A,B,C)


 ≥


∑

cyclic

sinA cosA




2

.

Our job is now to find a reasonable lower bound of
√
f(A,B,C). Once again, we express f(A,B,C)

as the sum of two squares. We observe that

f(A,B,C) = (sinC cosB)2 + (sinB cosC)2 + 2 sinC cosB sinB cosC cos(2A)
= (sinC cosB + sinB cosC)2 + 2 sinC cosB sinB cosC [−1 + cos(2A)]
= sin2(C +B)− 2 sinC cosB sinB cosC · 2 sin2A

= sin2A [1− 4 sinB sinC cosB cosC] .

So, we shall express 1− 4 sinB sinC cosB cosC as the sum of two squares. The trick is to replace
1 with

(
sin2B + cos2B

) (
sin2C + cos2C

)
. Indeed, we get

1− 4 sinB sinC cosB cosC =
(
sin2B + cos2B

) (
sin2C + cos2C

)− 4 sinB sinC cosB cosC

= (sinB cosC − sinC cosB)2 + (cosB cosC − sinB sinC)2

= sin2(B − C) + cos2(B + C)
= sin2(B − C) + cos2A.

5euler v. (in Mathematics) transform the problems in triangle geometry to trigonometric ones
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It therefore follows that

f(A,B,C) = sin2A
[
sin2(B − C) + cos2A

] ≥ sin2A cos2A

so that ∑

cyclic

cosA
√
f(A,B,C) ≥

∑

cyclic

sinA cos2A.

So, we can complete the proof if we establish that

∑

cyclic

sinA




∑

cyclic

sinA cos2A


 ≥


∑

cyclic

sinA cosA




2

.

Indeed, one sees that it’s a direct consequence of the Cauchy-Schwarz inequality

(p+ q + r)(x+ y + z) ≥ (
√
px+

√
qy +

√
rz)2,

where p, q, r, x, y and z are positive real numbers.

Alternatively, one may obtain another lower bound of f(A,B,C):

f(A,B,C) = (sinC cosB)2 + (sinB cosC)2 + 2 sinC cosB sinB cosC cos(2A)
= (sinC cosB − sinB cosC)2 + 2 sinC cosB sinB cosC [1 + cos(2A)]

= sin2(B − C) + 2
sin(2B)

2
· sin(2C)

2
· 2 cos2A

≥ cos2A sin(2B) sin(2C).

Then, we can use this to offer a lower bound of the perimeter of triangle PQR:

p(PQR) =
∑

cyclic

2ρ cosA
√
f(A,B,C) ≥

∑

cyclic

2ρ cos2A
√

sin 2B sin 2C

So, one may consider the following inequality:

p(ABC)
∑

cyclic

2ρ cos2A
√

sin 2B sin 2C ≥ p(DEF )2

or 
2ρ

∑

cyclic

sinA




∑

cyclic

2ρ cos2A
√

sin 2B sin 2C


 ≥


2ρ

∑

cyclic

sinA cosA




2

.

or 
∑

cyclic

sinA




∑

cyclic

cos2A
√

sin 2B sin 2C


 ≥


∑

cyclic

sinA cosA




2

.

However, it turned out that this doesn’t hold. Try to disprove this!

Problem 5. Let I be the incenter of the triangle ABC with BC = a, CA = b and AB = c. Prove
that, for all points X,

aXA2 + bXB2 + cXC2 ≥ abc.
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Proof. This geometric inequality follows from the following geometric identity:

aXA2 + bXB2 + cXC2 = (a+ b+ c)XI2 + abc. 6

There are many ways to establish this identity. To euler this, we toss the picture on the cartesian
plane so that A(c cosB, c sinB), B(0, 0) and C(a, 0). Letting r be the inradius of ABC and s =
a+b+c

2 , we get I(s− b, r). It’s well-known that

r2 =
(s− a)(s− b)(s− c)

s
.

Set X(p, q). On the one hand, we obtain

aXA2 + bXB2 + cXC2

= a
[
(p− c cosB)2 + (q − c sinB)2

]
+ b

(
p2 + q2

)
+ c

[
(p− a)2 + q2

]

= (a+ b+ c)p2 − 2acp(1 + cosB) + (a+ b+ c)q2 − 2acq sinB + ac2 + a2c

= 2sp2 − 2acp
(

1 +
a2 + c2 − b2

2ac

)
+ 2sq2 − 2acq

[4ABC]
1
2ac

+ ac2 + a2c

= 2sp2 − p(a+ c+ b) (a+ c− b) + 2sq2 − 4q[4ABC] + ac2 + a2c

= 2sp2 − p(2s) (2s− 2b) + 2sq2 − 4qsr + ac2 + a2c

= 2sp2 − 4s (s− b) p+ 2sq2 − 4rsq + ac2 + a2c.

On the other hand, we obtain

(a+ b+ c)XI2 + abc

= 2s
[
(p− (s− b))2 + (q − r)2

]

= 2s
[
p2 − 2(s− b)p+ (s− b)2 + q2 − 2qr + r2

]

= 2sp2 − 4s (s− b) p+ 2s(s− b)2 + 2sq2 − 4rsq + 2sr2 + abc.

It follows that

aXA2 + bXB2 + cXC2 − (a+ b+ c)XI2 − abc.
= ac2 + a2c− 2s(s− b)2 − 2sr2 − abc
= ac(a+ c)− 2s(s− b)2 − 2(s− a)(s− b)(s− c)− abc
= ac(a+ c− b)− 2s(s− b)2 − 2(s− a)(s− b)(s− c)
= 2ac(s− b)− 2s(s− b)2 − 2(s− a)(s− b)(s− c)
= 2(s− b) [ac− s(s− b)− 2(s− a)(s− c)] .

However, we compute ac− s(s− b)− 2(s− a)(s− c) = −2s2 + (a+ b+ c)s = 0.

Problem 6. (IMO 2001/1) Let ABC be an acute-angled triangle with O as its circumcenter.
Let P on line BC be the foot of the altitude from A. Assume that ∠BCA ≥ ∠ABC + 30◦. Prove
that ∠CAB + ∠COP < 90◦.

Proof. The angle inequality ∠CAB + ∠COP < 90◦ can be written as ∠COP < ∠PCO. This can
be shown if we establish the length inequality OP > PC. Since the power of P with respect to the
circumcircle of ABC is OP 2 = R2 − BP · PC, where R is the circumradius of the triangle ABC,

6IMO Short-list 1988
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it becomes R2 −BP · PC > PC2 or R2 > BC · PC. We euler this. It’s an easy job to get BC =
2R sinA and PC = 2R sinB cosC. Hence, we show the inequality R2 > 2R sinA · 2R sinB cosC
or sinA sinB cosC < 1

4 . Since sinA < 1, it suffices to show that sinA sinB cosC < 1
4 . Finally, we

use the angle condition ∠C ≥ ∠B + 30◦ to obtain the trigonometric inequality

sinB cosC =
sin(B + C)− sin(C −B)

2
≤ 1− sin(C −B)

2
≤ 1− sin 30◦

2
=

1
4
.

We close this section with Barrows’ inequality stronger than Erdös-Mordell Theorem. We need
the following trigonometric inequality:

Proposition 1.2.1. Let x, y, z, θ1, θ2, θ3 be real numbers with θ1 + θ2 + θ3 = π. Then,

x2 + y2 + z2 ≥ 2(yz cos θ1 + zx cos θ2 + xy cos θ3).

Proof. Using θ3 = π − (θ1 + θ2), it’s an easy job to check the following identity

x2 +y2 + z2−2(yz cos θ1 + zx cos θ2 +xy cos θ3) = (z − (x cos θ2 + y cos θ1))2 + (x sin θ2 − y sin θ1)2 .

Corollary 1.2.1. Let p, q, and r be positive real numbers. Let θ1, θ2, and θ3 be real numbers
satisfying θ1 + θ2 + θ3 = π. Then, the following inequality holds.

p cos θ1 + q cos θ2 + r cos θ3 ≤ 1
2

(
qr

p
+
rp

q
+
pq

r

)
.

Proof. Take (x, y, z) =
(√

qr
p ,
√

rp
q ,
√

pq
r

)
and apply the above proposition.

Theorem 1.2.2. (Barrow’s Inequality) Let P be an interior point of a triangle ABC and let
U , V , W be the points where the bisectors of angles BPC, CPA, APB cut the sides BC,CA,AB
respectively. Prove that PA+ PB + PC ≥ 2(PU + PV + PW ).

Proof. ([MB] and [AK]) Let d1 = PA, d2 = PB, d3 = PC, l1 = PU , l2 = PV , l3 = PW ,
2θ1 = ∠BPC, 2θ2 = ∠CPA, and 2θ3 = ∠APB. We need to show that d1 +d2 +d3 ≥ 2(l1 + l2 + l3).
It’s easy to deduce the following identities

l1 =
2d2d3

d2 + d3
cos θ1, l2 =

2d3d1

d3 + d1
cos θ2, and l3 =

2d1d2

d1 + d2
cos θ3,

By the AM-GM inequality and the above corollary, this means that

l1 + l2 + l3 ≤
√
d2d3 cos θ1 +

√
d3d1 cos θ2 +

√
d1d2 cos θ3 ≤ 1

2
(d1 + d2 + d3) .

As another application of the above trigonometric proposition, we establish the following in-
equality

Corollary 1.2.2. ([AK], Abi-Khuzam) Let x1, · · · , x4 be positive real numbers. Let θ1, · · · , θ4

be real numbers such that θ1 + · · ·+ θ4 = π. Then,

x1 cos θ1 + x2 cos θ2 + x3 cos θ3 + x4 cos θ4 ≤
√

(x1x2 + x3x4)(x1x3 + x2x4)(x1x4 + x2x3)
x1x2x3x4

.
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Proof. Let p = x1
2+x2

2

2x1x2
+ x3

2+x4
2

2x3x4
q = x1x2+x3x4

2 and λ =
√

p
q . In the view of θ1 + θ2 + (θ3 + θ4) = π

and θ3 + θ4 + (θ1 + θ2) = π, the proposition implies that

x1 cos θ1 + x2 cos θ2 + λ cos(θ3 + θ4) ≤ pλ =
√
pq,

and
x3 cos θ3 + x4 cos θ4 + λ cos(θ1 + θ2) ≤ q

λ
=
√
pq.

Since cos(θ3 + θ4) + cos(θ1 + θ2) = 0, adding these two above inequalities yields

x1 cos θ1 + x2 cos θ2 + x3 cos θ3 + x4 cos θ4 ≤ 2
√
pq =

√
(x1x2 + x3x4)(x1x3 + x2x4)(x1x4 + x2x3)

x1x2x3x4
.
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1.3 Applications of Complex Numbers

In this section, we discuss some applications of complex numbers to geometric inequality. Every
complex number corresponds to a unique point in the complex plane. The standard symbol for the
set of all complex numbers is C, and we also refer to the complex plane as C. The main tool is
applications of the following fundamental inequality.

Theorem 1.3.1. If z1, · · · , zn ∈ C, then |z1|+ · · ·+ |zn| ≥ |z1 + · · ·+ zn|.
Proof. Induction on n.

Theorem 1.3.2. (Ptolemy’s Inequality) For any points A,B,C,D in the plane, we have

AB · CD +BC ·DA ≥ AC ·BD.

Proof. Let a, b, c and 0 be complex numbers that correspond to A,B,C,D in the complex plane.
It becomes

|a− b| · |c|+ |b− c| · |a| ≥ |a− c| · |b|.
Applying the Triangle Inequality to the identity (a− b)c+(b− c)a = (a− c)b, we get the result.

Problem 7. ([TD]) Let P be an arbitrary point in the plane of a triangle ABC with the centroid
G. Show the following inequalities

(1) BC · PB · PC +AB · PA · PB + CA · PC · PA ≥ BC · CA ·AB and
(2) PA3 ·BC + PB

3 · CA+ PC
3 ·AB ≥ 3PG ·BC · CA ·AB.

Solution. We only check the first inequality. Regard A,B,C, P as complex numbers and assume
that P corresponds to 0. We’re required to prove that

|(B − C)BC|+ |(A−B)AB|+ |(C −A)CA| ≥ |(B − C)(C −A)(A−B)|.

It remains to apply the Triangle Inequality to the identity

(B − C)BC + (A−B)AB + (C −A)CA = −(B − C)(C −A)(A−B).

Problem 8. (IMO Short-list 2002) Let ABC be a triangle for which there exists an interior
point F such that ∠AFB = ∠BFC = ∠CFA. Let the lines BF and CF meet the sides AC and
AB at D and E, respectively. Prove that AB +AC ≥ 4DE.

Solution. Let AF = x,BF = y, CF = z and let ω = cos 2π
3 + i sin 2π

3 . We can toss the pictures
on C so that the points F , A, B, C, D, and E are represented by the complex numbers 0, x, yω,
zω2, d, and e. It’s an easy exercise to establish that DF = xz

x+z and EF = xy
x+y . This means that

d = − xz
x+zω and e = − xy

x+yω. We’re now required to prove that

|x− yω|+ |zω2 − x| ≥ 4
∣∣∣∣
−zx
z + x

ω +
xy

x+ y
ω2

∣∣∣∣ .

Since |ω| = 1 and ω3 = 1, we have |zω2−x| = |ω(zω2−x)| = |z−xω|. Therefore, we need to prove

|x− yω|+ |z − xω| ≥
∣∣∣∣

4zx
z + x

− 4xy
x+ y

ω

∣∣∣∣ .
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More strongly, we establish that |(x − yω) + (z − xω)| ≥
∣∣∣ 4zx
z+x − 4xy

x+yω
∣∣∣ or |p − qω| ≥ |r − sω|,

where p = z + x, q = y + x, r = 4zx
z+x and s = 4xy

x+y . It’s clear that p ≥ r > 0 and q ≥ s > 0. It
follows that

|p− qω|2 − |r − sω|2 = (p− qω)(p− qω)− (r− sω)(r − sω) = (p2 − r2) + (pq− rs) + (q2 − s2) ≥ 0.

It’s easy to check that the equality holds if and only if 4ABC is equilateral.
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Chapter 2

Four Basic Techniques

Differentiate! Shiing-shen Chern

2.1 Trigonometric Substitutions

If you are faced with an integral that contains square root expressions such as
∫ √

1− x2 dx,

∫ √
1 + y2 dy,

∫ √
z2 − 1 dz

then trigonometric substitutions such as x = sin t, y = tan t, z = sec t are very useful. We will
learn that making a suitable trigonometric substitution simplifies the given inequality.

Problem 9. (APMO 2004/5) Prove that, for all positive real numbers a, b, c,

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab+ bc+ ca).

First Solution. Choose A,B,C ∈ (0, π2
)

with a =
√

2 tanA, b =
√

2 tanB, and c =
√

2 tanC.
Using the well-known trigonometric identity 1 + tan2 θ = 1

cos2θ
, one may rewrite it as

4
9
≥ cosA cosB cosC (cosA sinB sinC + sinA cosB sinC + sinA sinB cosC) .

One may easily check the following trigonometric identity

cos(A+B + C) = cosA cosB cosC − cosA sinB sinC − sinA cosB sinC − sinA sinB cosC.

Then, the above trigonometric inequality takes the form

4
9
≥ cosA cosB cosC (cosA cosB cosC − cos(A+B + C)) .

Let θ = A+B+C
3 . Applying the AM-GM inequality and Jesen’s inequality, we have

cosA cosB cosC ≤
(

cosA+ cosB + cosC
3

)3

≤ cos3 θ.

We now need to show that
4
9
≥ cos3 θ(cos3 θ − cos 3θ).

Using the trigonometric identity

cos 3θ = 4 cos3 θ − 3 cos θ or cos3 θ − cos 3θ = 3 cos θ − 3 cos3 θ,

15



it becomes
4
27
≥ cos4 θ

(
1− cos2 θ

)
,

which follows from the AM-GM inequality

(
cos2 θ

2
· cos2 θ

2
· (1− cos2 θ

)) 1
3

≤ 1
3

(
cos2 θ

2
+

cos2 θ

2
+
(
1− cos2 θ

))
=

1
3
.

One find that the equality holds if and only if tanA = tanB = tanC = 1√
2

if and only if a = b =
c = 1.

Problem 10. (Latvia 2002) Let a, b, c, d be the positive real numbers such that

1
1 + a4

+
1

1 + b4
+

1
1 + c4

+
1

1 + d4
= 1.

Prove that abcd ≥ 3.

First Solution. We can write a2 = tanA, b2 = tanB, c2 = tanC, d2 = tanD, where A,B,C,D ∈(
0, π2

)
. Then, the algebraic identity becomes the following trigonometric identity :

cos2A+ cos2B + cos2C + cos2D = 1.

Applying the AM-GM inequality, we obtain

sin2A = 1− cos2A = cos2B + cos2C + cos2D ≥ 3 (cosB cosC cosD)
2
3 .

Similarly, we obtain

sin2B ≥ 3 (cosC cosD cosA)
2
3 , sin2C ≥ 3 (cosD cosA cosB)

2
3 , and sin2D ≥ 3 (cosA cosB cosC)

2
3 .

Multiplying these four inequalities, we get the result!

Problem 11. (Korea 1998) Let x, y, z be the positive reals with x+ y + z = xyz. Show that

1√
1 + x2

+
1√

1 + y2
+

1√
1 + z2

≤ 3
2
.

Since the function f is not concave on R+, we cannot apply Jensen’s inequality to the function
f(t) = 1√

1+t2
. However, the function f(tan θ) is concave on

(
0, π2

)
!

First Solution. We can write x = tanA, y = tanB, z = tanC, where A,B,C ∈ (0, π2
)
. Using the

fact that 1 + tan2 θ =
(

1
cos θ

)2, we rewrite it in the terms of A, B, C :

cosA+ cosB + cosC ≤ 3
2
.

It follows from tan(π − C) = −z = x+y
1−xy = tan(A + B) and from π − C,A + B ∈ (0, π) that

π − C = A+B or A+B + C = π. Hence, it suffices to show the following.

Theorem 2.1.1. In any acute triangle ABC, we have cosA+ cosB + cosC ≤ 3
2 .

Proof. Since cosx is concave on
(
0, π2

)
, it’s a direct consequence of Jensen’s inequality.
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We note that the function cosx is not concave on (0, π). In fact, it’s convex on
(
π
2 , π

)
. One may

think that the inequality cosA + cosB + cosC ≤ 3
2 doesn’t hold for any triangles. However, it’s

known that it holds for all triangles.

Theorem 2.1.2. In any triangle ABC, we have cosA+ cosB + cosC ≤ 3
2 .

First Proof. It follows from π−C = A+B that cosC = − cos(A+B) = − cosA cosB+sinA sinB
or

3− 2(cosA+ cosB + cosC) = (sinA− sinB)2 + (cosA+ cosB − 1)2 ≥ 0.

Second Proof. Let BC = a, CA = b, AB = c. Use the Cosine Law to rewrite the given inequality
in the terms of a, b, c :

b2 + c2 − a2

2bc
+
c2 + a2 − b2

2ca
+
a2 + b2 − c2

2ab
≤ 3

2
.

Clearing denominators, this becomes

3abc ≥ a(b2 + c2 − a2) + b(c2 + a2 − b2) + c(a2 + b2 − c2),

which is equivalent to abc ≥ (b+ c− a)(c+ a− b)(a+ b− c) in the theorem 2.

In the first chapter, we found that the geometric inequality R ≥ 2r is equivalent to the algebraic
inequality abc ≥ (b + c − a)(c + a − b)(a + b − c). We now find that, in the proof of the above
theorem, abc ≥ (b + c − a)(c + a − b)(a + b − c) is equivalent to the trigonometric inequality
cosA+ cosB + cosC ≤ 3

2 . One may ask that

In any triangles ABC, is there a natural relation between cosA+ cosB + cosC and R
r ,

where R and r are the radii of the circumcircle and incircle of ABC ?

Theorem 2.1.3. Let R and r denote the radii of the circumcircle and incircle of the triangle ABC.
Then, we have cosA+ cosB + cosC = 1 + r

R .

Proof. Use the identity a(b2 + c2 − a2) + b(c2 + a2 − b2) + c(a2 + b2 − c2) = 2abc+ (b+ c− a)(c+
a− b)(a+ b− c). We leave the details for the readers.

Exercise 4. (a) Let p, q, r be the positive real numbers such that p2 + q2 + r2 + 2pqr = 1. Show
that there exists an acute triangle ABC such that p = cosA, q = cosB, r = cosC.
(b) Let p, q, r ≥ 0 with p2 + q2 + r2 + 2pqr = 1. Show that there are A,B,C ∈ [0, π2

]
with p = cosA,

q = cosB, r = cosC, and A+B + C = π.

Problem 12. (USA 2001) Let a, b, and c be nonnegative real numbers such that a2+b2+c2+abc =
4. Prove that 0 ≤ ab+ bc+ ca− abc ≤ 2.

Solution. Notice that a, b, c > 1 implies that a2 + b2 + c2 + abc > 4. If a ≤ 1, then we have
ab + bc + ca − abc ≥ (1 − a)bc ≥ 0. We now prove that ab + bc + ca − abc ≤ 2. Letting a = 2p,
b = 2q, c = 2r, we get p2 + q2 + r2 + 2pqr = 1. By the above exercise, we can write

a = 2 cosA, b = 2 cosB, c = 2 cosC for some A,B,C ∈
[
0,
π

2

]
with A+B + C = π.

We are required to prove

cosA cosB + cosB cosC + cosC cosA− 2 cosA cosB cosC ≤ 1
2
.
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One may assume that A ≥ π
3 or 1− 2 cosA ≥ 0. Note that

cosA cosB+cosB cosC+cosC cosA−2 cosA cosB cosC = cosA(cosB+cosC)+cosB cosC(1−2 cosA).

We apply Jensen’s inequality to deduce cosB + cosC ≤ 3
2 − cosA. Note that 2 cosB cosC =

cos(B − C) + cos(B + C) ≤ 1− cosA. These imply that

cosA(cosB + cosC) + cosB cosC(1− 2 cosA) ≤ cosA
(

3
2
− cosA

)
+
(

1− cosA
2

)
(1− 2 cosA).

However, it’s easy to verify that cosA
(

3
2 − cosA

)
+
(

1−cosA
2

)
(1− 2 cosA) = 1

2 .
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2.2 Algebraic Substitutions

We know that some inequalities in triangle geometry can be treated by the Ravi substitution and
trigonometric substitutions. We can also transform the given inequalities into easier ones through
some clever algebraic substitutions.

Problem 13. (IMO 2001/2) Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

First Solution. To remove the square roots, we make the following substitution :

x =
a√

a2 + 8bc
, y =

b√
b2 + 8ca

, z =
c√

c2 + 8ab
.

Clearly, x, y, z ∈ (0, 1). Our aim is to show that x+ y + z ≥ 1. We notice that

a2

8bc
=

x2

1− x2
,

b2

8ac
=

y2

1− y2
,

c2

8ab
=

z2

1− z2
=⇒ 1

512
=
(

x2

1− x2

)(
y2

1− y2

)(
z2

1− z2

)
.

Hence, we need to show that

x+ y + z ≥ 1, where 0 < x, y, z < 1 and (1− x2)(1− y2)(1− z2) = 512(xyz)2.

However, 1 > x+ y + z implies that, by the AM-GM inequality,

(1−x2)(1−y2)(1−z2) > ((x+y+z)2−x2)((x+y+z)2−y2)((x+y+z)2−z2) = (x+x+y+z)(y+z)

(x+y+y+z)(z+x)(x+y+z+z)(x+y) ≥ 4(x2yz)
1
4 ·2(yz)

1
2 ·4(y2zx)

1
4 ·2(zx)

1
2 ·4(z2xy)

1
4 ·2(xy)

1
2

= 512(xyz)2. This is a contradiction !

Problem 14. (IMO 1995/2) Let a, b, c be positive numbers such that abc = 1. Prove that

1
a3(b+ c)

+
1

b3(c+ a)
+

1
c3(a+ b)

≥ 3
2
.

First Solution. After the substitution a = 1
x , b = 1

y , c = 1
z , we get xyz = 1. The inequality takes

the form
x2

y + z
+

y2

z + x
+

z2

x+ y
≥ 3

2
.

It follows from the Cauchy-Schwarz inequality that

[(y + z) + (z + x) + (x+ y)]
(

x2

y + z
+

y2

z + x
+

z2

x+ y

)
≥ (x+ y + z)2

so that, by the AM-GM inequality,

x2

y + z
+

y2

z + x
+

z2

x+ y
≥ x+ y + z

2
≥ 3(xyz)

1
3

2
=

3
2
.
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(Korea 1998) Let x, y, z be the positive reals with x+ y + z = xyz. Show that

1√
1 + x2

+
1√

1 + y2
+

1√
1 + z2

≤ 3
2
.

Second Solution. The starting point is letting a = 1
x , b = 1

y , c = 1
z . We find that a+ b+ c = abc is

equivalent to 1 = xy + yz + zx. The inequality becomes

x√
x2 + 1

+
y√
y2 + 1

+
z√

z2 + 1
≤ 3

2

or
x√

x2 + xy + yz + zx
+

y√
y2 + xy + yz + zx

+
z√

z2 + xy + yz + zx
≤ 3

2

or
x√

(x+ y)(x+ z)
+

y√
(y + z)(y + x)

+
z√

(z + x)(z + y)
≤ 3

2
.

By the AM-GM inequality, we have

x√
(x+ y)(x+ z)

=
x
√

(x+ y)(x+ z)
(x+ y)(x+ z)

≤ 1
2
x[(x+ y) + (x+ z)]

(x+ y)(x+ z)
=

1
2

(
x

x+ z
+

x

x+ z

)
.

In a like manner, we obtain

y√
(y + z)(y + x)

≤ 1
2

(
y

y + z
+

y

y + x

)
and

z√
(z + x)(z + y)

≤ 1
2

(
z

z + x
+

z

z + y

)
.

Adding these three yields the required result.

We now prove a classical theorem in various ways.

Theorem 2.2.1. (Nesbitt, 1903) For all positive real numbers a, b, c, we have

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Proof 1. After the substitution x = b+ c, y = c+ a, z = a+ b, it becomes

∑

cyclic

y + z − x
2x

≥ 3
2

or
∑

cyclic

y + z

x
≥ 6,

which follows from the AM-GM inequality as following:

∑

cyclic

y + z

x
=
y

x
+
z

x
+
z

y
+
x

y
+
x

z
+
y

z
≥ 6
(
y

x
· z
x
· z
y
· x
y
· x
z
· y
z

) 1
6

= 6.

Proof 2. We make the substitution

x =
a

b+ c
, y =

b

c+ a
, z =

c

a+ b
.

It follows that ∑

cyclic

f(x) =
∑

cyclic

a

a+ b+ c
= 1, where f(t) =

t

1 + t
.
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Since f is concave on (0,∞), Jensen’s inequality shows that

f

(
1
2

)
=

1
3

=
1
3

∑

cyclic

f(x) ≤ f
(
x+ y + z

3

)
or f

(
1
2

)
≤ f

(
x+ y + z

3

)
.

Since f is monotone increasing, this implies that

1
2
≤ x+ y + z

3
or

∑

cyclic

a

b+ c
= x+ y + z ≥ 3

2
.

Proof 3. As in the previous proof, it suffices to show that

T ≥ 1
2
, where T =

x+ y + z

3
and

∑

cyclic

x

1 + x
= 1.

One can easily check that the condition
∑

cyclic

x

1 + x
= 1

becomes 1 = 2xyz + xy + yz + zx. By the AM-GM inequality, we have

1 = 2xyz+xy+yz+zx ≤ 2T 3 +3T 2 ⇒ 2T 3 +3T 2−1 ≥ 0 ⇒ (2T−1)(T+1)2 ≥ 0 ⇒ T ≥ 1
2
.

(IMO 2000/2) Let a, b, c be positive numbers such that abc = 1. Prove that
(
a− 1 +

1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
≤ 1.

Second Solution. ([IV], Ilan Vardi) Since abc = 1, we may assume that a ≥ 1 ≥ b. 1 It follows
that

1−
(
a− 1 +

1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
=
(
c+

1
c
− 2
)(

a+
1
b
− 1
)

+
(a− 1)(1− b)

a
. 2

Third Solution. As in the first solution, after the substitution a = x
y , b = y

z , c = z
x for x, y, z > 0,

we can rewrite it as xyz ≥ (y + z − x)(z + x − y)(x + y − z). Without loss of generality, we can
assume that z ≥ y ≥ x. Set y − x = p and z − x = q with p, q ≥ 0. It’s straightforward to verify
that

xyz − (y + z − x)(z + x− y)(x+ y − z) = (p2 − pq + q2)x+ (p3 + q3 − p2q − pq2).

Since p2−pq+q2 ≥ (p−q)2 ≥ 0 and p3 +q3−p2q−pq2 = (p−q)2(p+q) ≥ 0, we get the result.

Fourth Solution. (From the IMO 2000 Short List) Using the condition abc = 1, it’s straight-
forward to verify the equalities

2 =
1
a

(
a− 1 +

1
b

)
+ c

(
b− 1 +

1
c

)
,

1Why? Note that the inequality is not symmetric in the three variables. Check it!
2For a verification of the identity, see [IV].
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2 =
1
b

(
b− 1 +

1
c

)
+ a

(
c− 1 +

1
a

)
,

2 =
1
c

(
c− 1 +

1
a

)
+ b

(
a− 1 +

1
c

)
.

In particular, they show that at most one of the numbers u = a−1+ 1
b , v = b−1+ 1

c , w = c−1+ 1
a

is negative. If there is such a number, we have
(
a− 1 +

1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
= uvw < 0 < 1.

And if u, v, w ≥ 0, the AM-GM inequality yields

2 =
1
a
u+ cv ≥ 2

√
c

a
uv, 2 =

1
b
v + aw ≥ 2

√
a

b
vw, 2 =

1
c
w + aw ≥ 2

√
b

c
wu.

Thus, uv ≤ a
c , vw ≤ b

a , wu ≤ c
b , so (uvw)2 ≤ a

c · ba · cb = 1. Since u, v, w ≥ 0, this completes the
proof.

Problem 15. Let a, b, c be positive real numbers satisfying a+ b+ c = 1. Show that

a

a+ bc
+

b

b+ ca
+

√
abc

c+ ab
≤ 1 +

3
√

3
4
.

Solution. We want to establish that

1
1 + bc

a

+
1

1 + ca
b

+

√
ab
c

1 + ab
c

≤ 1 +
3
√

3
4
.

Set x =
√

bc
a , y =

√
ca
b , z =

√
ab
c . We need to prove that

1
1 + x2

+
1

1 + y2
+

z

1 + z2
≤ 1 +

3
√

3
4
,

where x, y, z > 0 and xy + yz + zx = 1. It’s not hard to show that there exists A,B,C ∈ (0, π)
with

x = tan
A

2
, y = tan

B

2
, z = tan

C

2
, and A+B + C = π.

The inequality becomes

1

1 +
(
tan A

2

)2 +
1

1 +
(
tan B

2

)2 +
tan C

2

1 +
(
tan C

2

)2 ≤ 1 +
3
√

3
4

or

1 +
1
2

(cosA+ cosB + sinC) ≤ 1 +
3
√

3
4

or

cosA+ cosB + sinC ≤ 3
√

3
2
.
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Note that cosA+ cosB = 2 cos
(
A+B

2

)
cos
(
A−B

2

)
. Since

∣∣A−B
2

∣∣ < π
2 , this means that

cosA+ cosB ≤ 2 cos
(
A+B

2

)
= 2 cos

(
π − C

2

)
.

It will be enough to show that

2 cos
(
π − C

2

)
+ sinC ≤ 3

√
3

2
,

where C ∈ (0, π). This is a one-variable inequality.3 It’s left as an exercise for the reader.

Here, we give another solution of the problem 10.

(Latvia 2002) Let a, b, c, d be the positive real numbers such that

1
1 + a4

+
1

1 + b4
+

1
1 + c4

+
1

1 + d4
= 1.

Prove that abcd ≥ 3.

Second Solution. (given by Jeong Soo Sim at the KMO Weekend Program 2007) We need to prove
the inequality a4b4c4d4 ≥ 81. After making the substitution

A =
1

1 + a4
, B =

1
1 + b4

, C =
1

1 + c4
, D =

1
1 + d4

,

we obtain
a4 =

1−A
A

, b4 =
1−B
B

, c4 =
1− C
C

, d4 =
1−D
D

.

The constraint becomes A+B + C +D = 1 and the inequality can be written as

1−A
A
· 1−B

B
· 1− C

C
· 1−D

D
≥ 81.

or
B + C +D

A
· C +D +A

B
· D +A+B

C
· A+B + C

D
≥ 81.

or
(B + C +D)(C +D +A)(D +A+B)(A+B + C) ≥ 81ABCD.

However, this is an immediate consequence of the AM-GM inequality:

(B+C +D)(C +D+A)(D+A+B)(A+B+C) ≥ 3 (BCD)
1
3 · 3 (CDA)

1
3 · 3 (DAB)

1
3 · 3 (ABC)

1
3 .

Problem 16. (Iran 1998) Prove that, for all x, y, z > 1 such that 1
x + 1

y + 1
z = 2,

√
x+ y + z ≥ √x− 1 +

√
y − 1 +

√
z − 1.

3 Differentiate! Shiing-shen Chern
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First Solution. We begin with the algebraic substitution a =
√
x− 1, b =

√
y − 1, c =

√
z − 1.

Then, the condition becomes

1
1 + a2

+
1

1 + b2
+

1
1 + c2

= 2 ⇔ a2b2 + b2c2 + c2a2 + 2a2b2c2 = 1

and the inequality is equivalent to
√
a2 + b2 + c2 + 3 ≥ a+ b+ c ⇔ ab+ bc+ ca ≤ 3

2
.

Let p = bc, q = ca, r = ab. Our job is to prove that p+ q + r ≤ 3
2 where p2 + q2 + r2 + 2pqr = 1.

By the exercise 7, we can make the trigonometric substitution

p = cosA, q = cosB, r = cosC for some A,B,C ∈
(

0,
π

2

)
with A+B + C = π.

What we need to show is now that cosA+cosB+cosC ≤ 3
2 . It follows from Jensen’s inequality.

Problem 17. (Belarus 1998) Prove that, for all a, b, c > 0,

a

b
+
b

c
+
c

a
≥ a+ b

b+ c
+
b+ c

c+ a
+ 1.

Solution. After writing x = a
b and y = c

b , we get

c

a
=
y

x
,
a+ b

b+ c
=
x+ 1
1 + y

,
b+ c

c+ a
=

1 + y

y + x
.

One may rewrite the inequality as

x3y2 + x2 + x+ y3 + y2 ≥ x2y + 2xy + 2xy2.

Apply the AM-GM inequality to obtain

x3y2 + x

2
≥ x2y,

x3y2 + x+ y3 + y3

2
≥ 2xy2, x2 + y2 ≥ 2xy.

Adding these three inequalities, we get the result. The equality holds if and only if x = y = 1 or
a = b = c.

Problem 18. (IMO Short-list 2001) Let x1, · · · , xn be arbitrary real numbers. Prove the in-
equality.

x1

1 + x1
2

+
x2

1 + x1
2 + x2

2
+ · · ·+ xn

1 + x1
2 + · · ·+ xn2

<
√
n.

First Solution. We only consider the case when x1, · · · , xn are all nonnegative real numbers.(Why?)4

Let x0 = 1. After the substitution yi = x0
2+· · ·+xi2 for all i = 0, · · · , n, we obtain xi =

√
yi − yi−1.

We need to prove the following inequality
n∑

i=0

√
yi − yi−1

yi
<
√
n.

Since yi ≥ yi−1 for all i = 1, · · · , n, we have an upper bound of the left hand side:

n∑

i=0

√
yi − yi−1

yi
≤

n∑

i=0

√
yi − yi−1√
yiyi−1

=
n∑

i=0

√
1
yi−1

− 1
yi

4 x1
1+x12 + x2

1+x12+x22 + · · ·+ xn
1+x12+···+xn2 ≤ |x1|

1+x12 + |x2|
1+x12+x22 + · · ·+ |xn|

1+x12+···+xn2 .
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We now apply the Cauchy-Schwarz inequality to give an upper bound of the last term:

n∑

i=0

√
1
yi−1

− 1
yi
≤
√√√√n

n∑

i=0

(
1
yi−1

− 1
yi

)
=

√
n

(
1
y0
− 1
yn

)
.

Since y0 = 1 and yn > 0, this yields the desired upper bound
√
n.

Second Solution. We may assume that x1, · · · , xn are all nonnegative real numbers. Let x0 = 0.
We make the following algebraic substitution

ti =
xi√

x0
2 + · · ·+ xi2

, ci =
1√

1 + ti2
and si =

ti√
1 + ti2

for all i = 0, · · · , n. It’s an easy exercise to show that xi
x0

2+···+xi2 = c0 · · · cisi. Since si =
√

1− ci2 ,
the desired inequality becomes

c0c1

√
1− c1

2 + c0c1c2

√
1− c2

2 + · · ·+ c0c1 · · · cn
√

1− cn2 <
√
n.

Since 0 < ci ≤ 1 for all i = 1, · · · , n, we have

n∑

i=1

c0 · · · ci
√

1− ci2 ≤
n∑

i=1

c0 · · · ci−1

√
1− ci2 =

n∑

i=1

√
(c0 · · · ci−1)2 − (c0 · · · ci−1ci)2.

Since c0 = 1, by the Cauchy-Schwarz inequality, we obtain

n∑

i=1

√
(c0 · · · ci−1)2 − (c0 · · · ci−1ci)2 ≤

√√√√n
n∑

i=1

[(c0 · · · ci−1)2 − (c0 · · · ci−1ci)2] =
√
n [1− (c0 · · · cn)2].

25



2.3 Increasing Function Theorem

Theorem 2.3.1. (Increasing Function Theorem) Let f : (a, b) −→ R be a differentiable func-
tion. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotone increasing on (a, b). If f ′(x) > 0 for all
x ∈ (a, b), then f is strictly increasing on (a, b).

Proof. We first consider the case when f ′(x) > 0 for all x ∈ (a, b). Let a < x1 < x2 < b. We want
to show that f(x1) < f(x2). Applying the Mean Value Theorem, we find some c ∈ (x1, x2) such
that f(x2)− f(x1) = f ′(c)(x2 − x1). Since f ′(c) > 0, this equation means that f(x2)− f(x1) > 0.
In case when f ′(x) ≥ 0 for all x ∈ (a, b), we can also apply the Mean Value Theorem to get the
result.

Problem 19. (Ireland 2000) Let x, y ≥ 0 with x+ y = 2. Prove that x2y2(x2 + y2) ≤ 2.

First Solution. After homogenizing it, we need to prove

2
(
x+ y

2

)6

≥ x2y2(x2 + y2) or (x+ y)6 ≥ 32x2y2(x2 + y2).

(Now, forget the constraint x + y = 2!) In case xy = 0, it clearly holds. We now assume that
xy 6= 0. Because of the homogeneity of the inequality, this means that we may normalize to xy = 1.
Then, it becomes (

x+
1
x

)6

≥ 32
(
x2 +

1
x2

)
or p3 ≥ 32(p− 2).

where p =
(
x+ 1

x

)2 ≥ 4. Our job is now to minimize F (p) = p3 − 32(p − 2) on [4,∞). Since

F ′(p) = 3p2 − 32 ≥ 0, where p ≥
√

32
3 , F is (monotone) increasing on [4,∞). So, F (p) ≥ F (4) = 0

for all p ≥ 4.

Second Solution. As in the first solution, we prove that (x+ y)6 ≥ 32(x2 + y2)(xy)2 for all x, y ≥ 0.
In case x = y = 0, it’s clear. Now, if x2 + y2 > 0, then we may normalize to x2 + y2 = 2. Setting
p = xy, we have 0 ≤ p ≤ x2+y2

2 = 1 and (x+ y)2 = x2 + y2 + 2xy = 2 + 2p. It now becomes

(2 + 2p)3 ≥ 64p2 or p3 − 5p2 + 3p+ 1 ≥ 0.

We want to minimize F (p) = p3 − 5p2 + 3p + 1 on [0, 1]. We compute F ′(p) = 3
(
p− 1

3

)
(p − 3).

We find that F is monotone increasing on [0, 1
3 ] and monotone decreasing on [1

3 , 1]. Since F (0) = 1
and F (1) = 0, we conclude that F (p) ≥ F (1) = 0 for all p ∈ [0, 1].

Third Solution. We show that (x + y)6 ≥ 32(x2 + y2)(xy)2 where x ≥ y ≥ 0. We make the
substitution u = x+ y and v = x− y. Then, we have u ≥ v ≥ 0. It becomes

u6 ≥ 32
(
u2 + v2

2

)(
u2 − v2

4

)2

or u6 ≥ (u2 + v2)(u2 − v2)2.

Note that u4 ≥ u4 − v4 ≥ 0 and that u2 ≥ u2 − v2 ≥ 0. So, u6 ≥ (u4 − v4)(u2 − v2) =
(u2 + v2)(u2 − v2)2.

Problem 20. (IMO 1984/1) Let x, y, z be nonnegative real numbers such that x + y + z = 1.
Prove that 0 ≤ xy + yz + zx− 2xyz ≤ 7

27 .
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First Solution. Let f(x, y, z) = xy+yz+zx−2xyz. We may assume that 0 ≤ x ≤ y ≤ z ≤ 1. Since
x+ y + z = 1, this implies that x ≤ 1

3 . It follows that f(x, y, z) = (1− 3x)yz + xyz + zx+ xy ≥ 0.
Applying the AM-GM inequality, we obtain yz ≤ (y+z

2

)2 =
(

1−x
2

)2. Since 1− 2x ≥ 0, this implies
that

f(x, y, z) = x(y + z) + yz(1− 2x) ≤ x(1− x) +
(

1− x
2

)2

(1− 2x) =
−2x3 + x2 + 1

4
.

Our job is now to maximize a one-variable function F (x) = 1
4(−2x3 + x2 + 1), where x ∈ [0, 1

3

]
.

Since F ′(x) = 3
2x
(

1
3 − x

) ≥ 0 on
[
0, 1

3

]
, we conclude that F (x) ≤ F (1

3) = 7
27 for all x ∈ [0, 1

3

]
.

(IMO 2000/2) Let a, b, c be positive numbers such that abc = 1. Prove that
(
a− 1 +

1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
≤ 1.

Fifth Solution. (based on work by an IMO 2000 contestant from Japan) Since abc = 1, at least one
of a, b, c is greater than or equal to 1. Say b ≥ 1. Putting c = 1

ab , it becomes
(
a− 1 +

1
b

)
(b− 1 + ab)

(
1
ab
− 1 +

1
a

)
≤ 1

or
a3b3 − a2b3 − ab3 − a2b2 + 3ab2 − ab+ b3 − b2 − b+ 1 ≥ 0.

Setting x = ab, it becomes fb(x) ≥ 0, where

fb(t) = t3 + b3 − b2t− bt2 + 3bt− t2 − b2 − t− b+ 1.

Fix a positive number b ≥ 1. We need to show that F (t) := fb(t) ≥ 0 for all t ≥ 0. It follows from
b ≥ 1 that the cubic polynomial F ′(t) = 3t2 − 2(b+ 1)t− (b2 − 3b+ 1) has two real roots

b+ 1−√4b2 − 7b+ 4
3

and λ =
b+ 1 +

√
4b2 − 7b+ 4
3

.

Since F has a local minimum at t = λ, we find that F (t) ≥ Min {F (0), F (λ)} for all t ≥ 0. We
have to prove that F (0) ≥ 0 and F (λ) ≥ 0. We have F (0) = b3 − b2 − b+ 1 = (b− 1)2(b+ 1) ≥ 0.
It remains to show that F (λ) ≥ 0. Notice that λ is a root of F /(t). After long division, we get

F (t) = F ′(t)
(

1
3
t− b+ 1

9

)
+

1
9
(
(−8b2 + 14b− 8)t+ 8b3 − 7b2 − 7b+ 8

)
.

Putting t = λ, we have

F (λ) =
1
9
(
(−8b2 + 14b− 8)λ+ 8b3 − 7b2 − 7b+ 8

)
.

Thus, our job is now to establish that, for all b ≥ 0,

(−8b2 + 14b− 8)

(
b+ 1 +

√
4b2 − 7b+ 4
3

)
+ 8b3 − 7b2 − 7b+ 8 ≥ 0,

which is equivalent to

16b3 − 15b2 − 15b+ 16 ≥ (8b2 − 14b+ 8)
√

4b2 − 7b+ 4 .
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Since both 16b3 − 15b2 − 15b+ 16 and 8b2 − 14b+ 8 are positive,5 it’s equivalent to

(16b3 − 15b2 − 15b+ 16)2 ≥ (8b2 − 14b+ 8)2(4b2 − 7b+ 4)

or

864b5 − 3375b4 + 5022b3 − 3375b2 + 864b ≥ 0 or 864b4 − 3375b3 + 5022b2 − 3375b+ 864 ≥ 0.

Let G(x) = 864x4 − 3375x3 + 5022x2 − 3375x + 864. We prove that G(x) ≥ 0 for all x ∈ R. We
find that

G′(x) = 3456x3 − 10125x2 + 10044x− 3375 = (x− 1)(3456x2 − 6669x+ 3375).

Since 3456x2 − 6669x+ 3375 > 0 for all x ∈ R, we find that G(x) and x− 1 have the same sign. It
follows that G is monotone decreasing on (−∞, 1] and monotone increasing on [1,∞). We conclude
that G has the global minimum at x = 1. Hence, G(x) ≥ G(1) = 0 for all x ∈ R.

5It’s easy to check that 16b3 − 15b2 − 15b + 16 = 16(b3 − b2 − b + 1) + b2 + b > 16(b2 − 1)(b − 1) ≥ 0 and
8b2 − 14b+ 8 = 8(b− 1)2 + 2b > 0.
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2.4 Establishing New Bounds

We first give two alternative ways to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbers a, b, c, we have

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Proof 4. From
(

a
b+c − 1

2

)2
≥ 0, we deduce that

a

b+ c
≥ 1

4
·

8a
b+c − 1
a
b+c + 1

=
8a− b− c

4(a+ b+ c)
.

It follows that ∑

cyclic

a

b+ c
≥
∑

cyclic

8a− b− c
4(a+ b+ c)

=
3
2
.

Proof 5. We claim that

a

b+ c
≥ 3a

3
2

2
(
a

3
2 + b

3
2 + c

3
2

) or 2
(
a

3
2 + b

3
2 + c

3
2

)
≥ 3a

1
2 (b+ c).

The AM-GM inequality gives a
3
2 + b

3
2 + b

3
2 ≥ 3a

1
2 b and a

3
2 + c

3
2 + c

3
2 ≥ 3a

1
2 c . Adding these two

inequalities yields 2
(
a

3
2 + b

3
2 + c

3
2

)
≥ 3a

1
2 (b+ c), as desired. Therefore, we have

∑

cyclic

a

b+ c
≥ 3

2

∑

cyclic

a
3
2

a
3
2 + b

3
2 + c

3
2

=
3
2
.

Some cyclic inequalities can be proved by finding new bounds. Suppose that we want to establish
that ∑

cyclic

F (x, y, z) ≥ C.

If a function G satisfies

(1) F (x, y, z) ≥ G(x, y, z) for all x, y, z > 0, and
(2)

∑
cyclicG(x, y, z) = C for all x, y, z > 0,

then, we deduce that ∑

cyclic

F (x, y, z) ≥
∑

cyclic

G(x, y, z) = C.

For example, if a function F satisfies

F (x, y, z) ≥ x

x+ y + z

for all x, y, z > 0, then, taking the cyclic sum yields
∑

cyclic

F (x, y, z) ≥ 1.

As we saw in the above two proofs of Nesbitt’s inequality, there are various lower bounds.
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Problem 21. Let a, b, c be the lengths of a triangle. Show that

a

b+ c
+

b

c+ a
+

c

a+ b
< 2.

Proof. We don’t employ the Ravi substitution. It follows from the triangle inequality that
∑

cyclic

a

b+ c
<
∑

cyclic

a
1
2(a+ b+ c)

= 2.

One day, I tried finding a new lower bound of (x+y+z)2 where x, y, z > 0 . There are well-known
lower bounds such as 3(xy+yz+ zx) and 9(xyz)

2
3 . But I wanted to find quite different one. I tried

breaking the symmetry of the three variables x, y, z. Note that

(x+ y + z)2 = x2 + y2 + z2 + xy + xy + yz + yz + zx+ zx.

I applied the AM-GM inequality to the right hand side except the term x2 :

y2 + z2 + xy + xy + yz + yz + zx+ zx ≥ 8x
1
2 y

3
4 z

3
4 .

It follows that
(x+ y + z)2 ≥ x2 + 8x

1
2 y

3
4 z

3
4 = x

1
2

(
x

3
2 + 8y

3
4 z

3
4

)
.

(IMO 2001/2) Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Second Solution. We find that the above inequality also gives another lower bound of x + y + z,
that is,

x+ y + z ≥
√
x

1
2

(
x

3
2 + 8y

3
4 z

3
4

)
.

It follows that
∑

cyclic

x
3
4√

x
3
2 + 8y

3
4 z

3
4

≥
∑

cyclic

x

x+ y + z
= 1.

After the substitution x = a
4
3 , y = b

4
3 , and z = c

4
3 , it now becomes

∑

cyclic

a√
a2 + 8bc

≥ 1.

Problem 22. (IMO 2005/3) Let x, y, and z be positive numbers such that xyz ≥ 1. Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0.
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First Solution. It’s equivalent to the following inequality
(

x2 − x5

x5 + y2 + z2
+ 1
)

+
(

y2 − y5

y5 + z2 + x2
+ 1
)

+
(

z2 − z5

z5 + x2 + y2
+ 1
)
≤ 3

or
x2 + y2 + z2

x5 + y2 + z2
+
x2 + y2 + z2

y5 + z2 + x2
+
x2 + y2 + z2

z5 + x2 + y2
≤ 3.

With the Cauchy-Schwarz inequality and the fact that xyz ≥ 1, we have

(x5 + y2 + z2)(yz + y2 + z2) ≥ (x2 + y2 + z2)2 or
x2 + y2 + z2

x5 + y2 + z2
≤ yz + y2 + z2

x2 + y2 + z2
.

Taking the cyclic sum and x2 + y2 + z2 ≥ xy + yz + zx give us

x2 + y2 + z2

x5 + y2 + z2
+
x2 + y2 + z2

y5 + z2 + x2
+
x2 + y2 + z2

z5 + x2 + y2
≤ 2 +

xy + yz + zx

x2 + y2 + z2
≤ 3.

Second Solution. The main idea is to think of 1 as follows :

x5

x5 + y2 + z2
+

y5

y5 + z2 + x2
+

z5

z5 + x2 + y2
≥ 1 ≥ x2

x5 + y2 + z2
+

y2

y5 + z2 + x2
+

z2

z5 + x2 + y2
.

We first show the left-hand. It follows from y4 + z4 ≥ y3z + yz3 = yz(y2 + z2) that

x(y4 + z4) ≥ xyz(y2 + z2) ≥ y2 + z2 or
x5

x5 + y2 + z2
≥ x5

x5 + xy4 + xz4
=

x4

x4 + y4 + z4
.

Taking the cyclic sum, we have the required inequality. It remains to show the right-hand.
[First Way] As in the first solution, the Cauchy-Schwarz inequality and xyz ≥ 1 imply that

(x5 + y2 + z2)(yz + y2 + z2) ≥ (x2 + y2 + z2)2 or
x2(yz + y2 + z2)
(x2 + y2 + z2)2

≥ x2

x5 + y2 + z2
.

Taking the cyclic sum, we have

∑

cyclic

x2(yz + y2 + z2)
(x2 + y2 + z2)2

≥
∑

cyclic

x2

x5 + y2 + z2
.

Our job is now to establish the following homogeneous inequality

1 ≥
∑

cyclic

x2(yz + y2 + z2)
(x2 + y2 + z2)2

⇔ (x2 + y2 + z2)2 ≥ 2
∑

cyclic

x2y2 +
∑

cyclic

x2yz ⇔
∑

cyclic

x4 ≥
∑

cyclic

x2yz.

However, by the AM-GM inequality, we obtain

∑

cyclic

x4 =
∑

cyclic

x4 + y4

2
≥
∑

cyclic

x2y2 =
∑

cyclic

x2

(
y2 + z2

2

)
≥
∑

cyclic

x2yz.

[Second Way] We claim that

2x4 + y4 + z4 + 4x2y2 + 4x2z2

4(x2 + y2 + z2)2
≥ x2

x5 + y2 + z2
.
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We do this by proving

2x4 + y4 + z4 + 4x2y2 + 4x2z2

4(x2 + y2 + z2)2
≥ x2yz

x4 + y3z + yz3

because xyz ≥ 1 implies that

x2yz

x4 + y3z + yz3
=

x2

x5

xyz + y2 + z2
≥ x2

x5 + y2 + z2
.

Hence, we need to show the homogeneous inequality

(2x4 + y4 + z4 + 4x2y2 + 4x2z2)(x4 + y3z + yz3) ≥ 4x2yz(x2 + y2 + z2)2.

However, this is a straightforward consequence of the AM-GM inequality.

(2x4 + y4 + z4 + 4x2y2 + 4x2z2)(x4 + y3z + yz3)− 4x2yz(x2 + y2 + z2)2

= (x8 + x4y4 + x6y2 + x6y2 + y7z + y3z5) + (x8 + x4z4 + x6z2 + x6z2 + yz7 + y5z3)
+2(x6y2 + x6z2)− 6x4y3z − 6x4yz3 − 2x6yz

≥ 6 6
√
x8 · x4y4 · x6y2 · x6y2 · y7z · y3z5 + 6 6

√
x8 · x4z4 · x6z2 · x6z2 · yz7 · y5z3

+2
√
x6y2 · x6z2 − 6x4y3z − 6x4yz3 − 2x6yz

= 0.

Taking the cyclic sum, we obtain

1 =
∑

cyclic

2x4 + y4 + z4 + 4x2y2 + 4x2z2

4(x2 + y2 + z2)2
≥
∑

cyclic

x2

x5 + y2 + z2
.

Third Solution. (by an IMO 2005 contestant Iurie Boreico6 from Moldova) We establish that

x5 − x2

x5 + y2 + z2
≥ x5 − x2

x3(x2 + y2 + z2)
.

It follows immediately from the identity

x5 − x2

x5 + y2 + z2
− x5 − x2

x3(x2 + y2 + z2)
=

(x3 − 1)2x2(y2 + z2)
x3(x2 + y2 + z2)(x5 + y2 + z2)

.

Taking the cyclic sum and using xyz ≥ 1, we have

∑

cyclic

x5 − x2

x5 + y2 + z2
≥ 1
x5 + y2 + z2

∑

cyclic

(
x2 − 1

x

)
≥ 1
x5 + y2 + z2

∑

cyclic

(
x2 − yz) ≥ 0.

Here is a brilliant solution of

Problem 23. (KMO Weekend Program 2007) Prove that, for all a, b, c, x, y, z > 0,

ax

a+ x
+

by

b+ y
+

cz

c+ z
≤ (a+ b+ c)(x+ y + z)

a+ b+ c+ x+ y + z
.

6He received the special prize for this solution.
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Solution. (by Sanghoon) We need the following lemma:
Lemma. For all p, q, ω1, ω2 > 0, we have

pq

p+ q
≤ ω1

2p+ ω2
2q

(ω1 + ω2)2 .

Proof of lemma. It’s equivalent to

(p+ q)
(
ω1

2p+ ω2
2q
)− (ω1 + ω2)2 pq ≥ 0

or
(ω1p− ω2q)

2 ≥ 0.

Taking (p, q, ω1, ω2) = (a, x, x+ y + z, a+ b+ c) in the lemma, we get

ax

a+ x
≤ (x+ y + z)2a+ (a+ b+ c)2x

(x+ y + z + a+ b+ c)2 .

Similarly, we obtain
by

b+ y
≤ (x+ y + z)2b+ (a+ b+ c)2y

(x+ y + z + a+ b+ c)2

and
cz

c+ z
≤ (x+ y + z)2c+ (a+ b+ c)2z

(x+ y + z + a+ b+ c)2 .

Adding the above three inequalities, we get

ax

a+ x
+

by

b+ y
+

cz

c+ z
≤ (x+ y + z)2(a+ b+ c) + (a+ b+ c)2(x+ y + z)

(x+ y + z + a+ b+ c)2 .

or
ax

a+ x
+

by

b+ y
+

cz

c+ z
≤ (a+ b+ c)(x+ y + z)

a+ b+ c+ x+ y + z
.

Exercise 5. (USAMO Summer Program 2002) Let a, b, c be positive real numbers. Prove
that (

2a
b+ c

) 2
3

+
(

2b
c+ a

) 2
3

+
(

2c
a+ b

) 2
3

≥ 3.

(Hint. [TJM]) Establish the inequality
(

2a
b+c

) 2
3 ≥ 3

(
a

a+b+c

)
.

Exercise 6. (APMO 2005) (abc = 8, a, b, c > 0)

a2

√
(1 + a3)(1 + b3)

+
b2√

(1 + b3)(1 + c3)
+

c2

√
(1 + c3)(1 + a3)

≥ 4
3

(Hint.) Use the inequality 1√
1+x3

≥ 2
2+x2 to give a lower bound of the left hand side.
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Chapter 3

Homogenizations and Normalizations

Every Mathematician Has Only a Few Tricks. A long time ago an older and well-known number
theorist made some disparaging remarks about Paul Erdös′s work. You admire Erdos′s contributions to
mathematics as much as I do, and I felt annoyed when the older mathematician flatly and definitively stated
that all of Erdos′s work could be reduced to a few tricks which Erdös repeatedly relied on in his proofs. What
the number theorist did not realize is that other mathematicians, even the very best, also rely on a few tricks
which they use over and over. Take Hilbert. The second volume of Hilbert′s collected papers contains Hilbert′s
papers in invariant theory. I have made a point of reading some of these papers with care. It is sad to note
that some of Hilbert′s beautiful results have been completely forgotten. But on reading the proofs of Hilbert′s
striking and deep theorems in invariant theory, it was surprising to verify that Hilbert′s proofs relied on the
same few tricks. Even Hilbert had only a few tricks! Gian-Carlo Rota, Ten Lessons I Wish I Had
Been Taught, Notices of the AMS, January 1997

3.1 Homogenizations

Many inequality problems come with constraints such as ab = 1, xyz = 1, x + y + z = 1. A
non-homogeneous symmetric inequality can be transformed into a homogeneous one. Then we
apply two powerful theorems : Shur’s inequality and Muirhead’s theorem. We begin with a simple
example.

Problem 24. (Hungary 1996) Let a and b be positive real numbers with a+ b = 1. Prove that

a2

a+ 1
+

b2

b+ 1
≥ 1

3
.

Solution. Using the condition a + b = 1, we can reduce the given inequality to homogeneous one,
i. e.,

1
3
≤ a2

(a+ b)(a+ (a+ b))
+

b2

(a+ b)(b+ (a+ b))
or a2b+ ab2 ≤ a3 + b3,

which follows from (a3 + b3)− (a2b+ ab2) = (a− b)2(a+ b) ≥ 0. The equality holds if and only if
a = b = 1

2 .

The above inequality a2b+ ab2 ≤ a3 + b3 can be generalized as following :

Theorem 3.1.1. Let a1, a2, b1, b2 be positive real numbers such that a1+a2 = b1+b2 and max(a1, a2) ≥
max(b1, b2). Let x and y be nonnegative real numbers. Then, we have xa1ya2 + xa2ya1 ≥ xb1yb2 +
xb2yb1.
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Proof. Without loss of generality, we can assume that a1 ≥ a2, b1 ≥ b2, a1 ≥ b1. If x or y is zero,
then it clearly holds. So, we assume that both x and y are nonzero. It follows from a1 +a2 = b1 +b2
that a1 − a2 = (b1 − a2) + (b2 − a2). It’s easy to check

xa1ya2 + xa2ya1 − xb1yb2 − xb2yb1 = xa2ya2

(
xa1−a2 + ya1−a2 − xb1−a2yb2−a2 − xb2−a2yb1−a2

)

= xa2ya2

(
xb1−a2 − yb1−a2

)(
xb2−a2 − yb2−a2

)

=
1

xa2ya2

(
xb1 − yb1

)(
xb2 − yb2

)
≥ 0.

Remark 3.1.1. When does the equality hold in the theorem 8?

We now introduce two summation notations
∑

cyclic and
∑

sym. Let P (x, y, z) be a three variables
function of x, y, z. Let us define :

∑

cyclic

P (x, y, z) = P (x, y, z) + P (y, z, x) + P (z, x, y),

∑
sym

P (x, y, z) = P (x, y, z) + P (x, z, y) + P (y, x, z) + P (y, z, x) + P (z, x, y) + P (z, y, x).

For example, we know that
∑

cyclic

x3y = x3y + y3z + z3x,
∑
sym

x3 = 2(x3 + y3 + z3)

∑
sym

x2y = x2y + x2z + y2z + y2x+ z2x+ z2y,
∑
sym

xyz = 6xyz.

Problem 25. (IMO 1984/1) Let x, y, z be nonnegative real numbers such that x + y + z = 1.
Prove that 0 ≤ xy + yz + zx− 2xyz ≤ 7

27 .

Second Solution. Using the condition x+y+z = 1, we reduce the given inequality to homogeneous
one, i. e.,

0 ≤ (xy + yz + zx)(x+ y + z)− 2xyz ≤ 7
27

(x+ y + z)3.

The left hand side inequality is trivial because it’s equivalent to

0 ≤ xyz +
∑
sym

x2y.

The right hand side inequality simplifies to

7
∑

cyclic

x3 + 15xyz − 6
∑
sym

x2y ≥ 0.

In the view of

7
∑

cyclic

x3 + 15xyz − 6
∑
sym

x2y =


2

∑

cyclic

x3 −
∑
sym

x2y


+ 5


3xyz +

∑

cyclic

x3 −
∑
sym

x2y


 ,
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it’s enough to show that

2
∑

cyclic

x3 ≥
∑
sym

x2y and 3xyz +
∑

cyclic

x3 ≥
∑
sym

x2y.

We note that

2
∑

cyclic

x3 −
∑
sym

x2y =
∑

cyclic

(x3 + y3)−
∑

cyclic

(x2y + xy2) =
∑

cyclic

(x3 + y3 − x2y − xy2) ≥ 0.

The second inequality can be rewritten as
∑

cyclic

x(x− y)(x− z) ≥ 0,

which is a particular case of Schur’s theorem in the next section.

After homogenizing, sometimes we can find the right approach to see the inequalities:

(Iran 1998) Prove that, for all x, y, z > 1 such that 1
x + 1

y + 1
z = 2,

√
x+ y + z ≥ √x− 1 +

√
y − 1 +

√
z − 1.

Second Solution. After the algebraic substitution a = 1
x , b = 1

y , c = 1
z , we are required to prove

that √
1
a

+
1
b

+
1
c
≥
√

1− a
a

+

√
1− b
b

+

√
1− c
c

,

where a, b, c ∈ (0, 1) and a+ b+ c = 2. Using the constraint a+ b+ c = 2, we obtain a homogeneous
inequality

√
1
2

(a+ b+ c)
(

1
a

+
1
b

+
1
c

)
≥
√

a+b+c
2 − a
a

+

√
a+b+c

2 − b
b

+

√
a+b+c

2 − c
c

or √
(a+ b+ c)

(
1
a

+
1
b

+
1
c

)
≥
√
b+ c− a

a
+

√
c+ a− b

b
+

√
a+ b− c

c
,

which immediately follows from the Cauchy-Schwarz inequality
√

[(b+ c− a) + (c+ a− b) + (a+ b− c)]
(

1
a

+
1
b

+
1
c

)
≥
√
b+ c− a

a
+

√
c+ a− b

b
+

√
a+ b− c

c
.
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3.2 Schur’s Inequality and Muirhead’s Theorem

Theorem 3.2.1. (Schur) Let x, y, z be nonnegative real numbers. For any r > 0, we have
∑

cyclic

xr(x− y)(x− z) ≥ 0.

Proof. Since the inequality is symmetric in the three variables, we may assume without loss of
generality that x ≥ y ≥ z. Then the given inequality may be rewritten as

(x− y)[xr(x− z)− yr(y − z)] + zr(x− z)(y − z) ≥ 0,

and every term on the left-hand side is clearly nonnegative.

Remark 3.2.1. When does the equality hold in Schur’s Inequality?

Exercise 7. Disprove the following proposition: For all a, b, c, d ≥ 0 and r > 0, we have

ar(a− b)(a− c)(a−d) + br(b− c)(b−d)(b−a) + cr(c−a)(c− c)(a−d) +dr(d−a)(d− b)(d− c) ≥ 0.

The following special case of Schur’s inequality is useful :
∑

cyclic

x(x− y)(x− z) ≥ 0 ⇔ 3xyz +
∑

cyclic

x3 ≥
∑
sym

x2y ⇔
∑
sym

xyz +
∑
sym

x3 ≥ 2
∑
sym

x2y.

Corollary 3.2.1. Let x, y, z be nonnegative real numbers. Then, we have

3xyz + x3 + y3 + z3 ≥ 2
(

(xy)
3
2 + (yz)

3
2 + (zx)

3
2

)
.

Proof. By Schur’s inequality and the AM-GM inequality, we have

3xyz +
∑

cyclic

x3 ≥
∑

cyclic

x2y + xy2 ≥
∑

cyclic

2(xy)
3
2 .

We now use Schur’s inequality to give an alternative solution of

(APMO 2004/5) Prove that, for all positive real numbers a, b, c,

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab+ bc+ ca).

Second Solution. After expanding, it becomes

8 + (abc)2 + 2
∑

cyclic

a2b2 + 4
∑

cyclic

a2 ≥ 9
∑

cyclic

ab.

From the inequality (ab− 1)2 + (bc− 1)2 + (ca− 1)2 ≥ 0, we obtain

6 + 2
∑

cyclic

a2b2 ≥ 4
∑

cyclic

ab.

Hence, it will be enough to show that

2 + (abc)2 + 4
∑

cyclic

a2 ≥ 5
∑

cyclic

ab.

Since 3(a2 + b2 + c2) ≥ 3(ab+ bc+ ca), it will be enough to show that

2 + (abc)2 +
∑

cyclic

a2 ≥ 2
∑

cyclic

ab,

which is a particular case of the following result for t = 1.

37



Corollary 3.2.2. Let t ∈ (0, 3]. For all a, b, c ≥ 0, we have

(3− t) + t(abc)
2
t +

∑

cyclic

a2 ≥ 2
∑

cyclic

ab.

In particular, we obtain non-homogeneous inequalities

5
2

+
1
2

(abc)4 + a2 + b2 + c2 ≥ 2(ab+ bc+ ca),

2 + (abc)2 + a2 + b2 + c2 ≥ 2(ab+ bc+ ca),

1 + 2abc+ a2 + b2 + c2 ≥ 2(ab+ bc+ ca).

Proof. After setting x = a
2
3 , y = b

2
3 , z = c

2
3 , it becomes

3− t+ t(xyz)
3
t +

∑

cyclic

x3 ≥ 2
∑

cyclic

(xy)
3
2 .

By the corollary 1, it will be enough to show that

3− t+ t(xyz)
3
t ≥ 3xyz,

which is a straightforward consequence of the weighted AM-GM inequality :

3− t
3
· 1 +

t

3
(xyz)

3
t ≥ 1

3−t
3

(
(xyz)

3
t

) t
3 = 3xyz.

One may check that the equality holds if and only if a = b = c = 1.

(IMO 2000/2) Let a, b, c be positive numbers such that abc = 1. Prove that
(
a− 1 +

1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
≤ 1.

Second Solution. It is equivalent to the following homogeneous inequality1 :
(
a− (abc)1/3 +

(abc)2/3

b

)(
b− (abc)1/3 +

(abc)2/3

c

)(
c− (abc)1/3 +

(abc)2/3

a

)
≤ abc.

After the substitution a = x3, b = y3, c = z3 with x, y, z > 0, it becomes
(
x3 − xyz +

(xyz)2

y3

)(
y3 − xyz +

(xyz)2

z3

)(
z3 − xyz +

(xyz)2

x3

)
≤ x3y3z3,

which simplifies to
(
x2y − y2z + z2x

) (
y2z − z2x+ x2y

) (
z2x− x2y + y2z

) ≤ x3y3z3

or
3x3y3z3 +

∑

cyclic

x6y3 ≥
∑

cyclic

x4y4z +
∑

cyclic

x5y2z2

or
3(x2y)(y2z)(z2x) +

∑

cyclic

(x2y)3 ≥
∑
sym

(x2y)2(y2z)

which is a special case of Schur’s inequality.
1For an alternative homogenization, see the problem 1 in the chapter 2.
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Here is another inequality problem with the constraint abc = 1.

Problem 26. (Tournament of Towns 1997) Let a, b, c be positive numbers such that abc = 1.
Prove that

1
a+ b+ 1

+
1

b+ c+ 1
+

1
c+ a+ 1

≤ 1.

Solution. We can rewrite the given inequality as following :

1
a+ b+ (abc)1/3

+
1

b+ c+ (abc)1/3
+

1
c+ a+ (abc)1/3

≤ 1
(abc)1/3

.

We make the substitution a = x3, b = y3, c = z3 with x, y, z > 0. Then, it becomes

1
x3 + y3 + xyz

+
1

y3 + z3 + xyz
+

1
z3 + x3 + xyz

≤ 1
xyz

which is equivalent to

xyz
∑

cyclic

(x3 + y3 + xyz)(y3 + z3 + xyz) ≤ (x3 + y3 + xyz)(y3 + z3 + xyz)(z3 + x3 + xyz)

or ∑
sym

x6y3 ≥
∑
sym

x5y2z2 !

We apply the theorem 9 to obtain
∑
sym

x6y3 =
∑

cyclic

x6y3 + y6x3

≥
∑

cyclic

x5y4 + y5x4

=
∑

cyclic

x5(y4 + z4)

≥
∑

cyclic

x5(y2z2 + y2z2)

=
∑
sym

x5y2z2.

Exercise 8. ([TZ], pp.142) Prove that for any acute triangle ABC,

cot3A+ cot3B + cot3C + 6 cotA cotB cotC ≥ cotA+ cotB + cotC.

Exercise 9. (Korea 1998) Let I be the incenter of a triangle ABC. Prove that

IA2 + IB2 + IC2 ≥ BC2 + CA2 +AB2

3
.

Exercise 10. ([IN], pp.103) Let a, b, c be the lengths of a triangle. Prove that

a2b+ a2c+ b2c+ b2a+ c2a+ c2b > a3 + b3 + c3 + 2abc.
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Exercise 11. (Surányi’s inequality)) Show that, for all x1, · · · , xn ≥ 0,

(n− 1) (x1
n + · · ·xnn) + nx1 · · ·xn ≥ (x1 + · · ·xn)

(
x1
n−1 + · · ·xnn−1

)
.

Theorem 3.2.2. (Muirhead) Let a1, a2, a3, b1, b2, b3 be real numbers such that

a1 ≥ a2 ≥ a3 ≥ 0, b1 ≥ b2 ≥ b3 ≥ 0, a1 ≥ b1, a1 + a2 ≥ b1 + b2, a1 + a2 + a3 = b1 + b2 + b3.

Let x, y, z be positive real numbers. Then, we have
∑

sym x
a1ya2za3 ≥∑sym x

b1yb2zb3.

Proof. Case 1. b1 ≥ a2 : It follows from a1 ≥ a1 + a2 − b1 and from a1 ≥ b1 that a1 ≥ max(a1 +
a2− b1, b1) so that max(a1, a2) = a1 ≥ max(a1 + a2− b1, b1). From a1 + a2− b1 ≥ b1 + a3− b1 = a3

and a1 + a2 − b1 ≥ b2 ≥ b3, we have max(a1 + a2 − b1, a3) ≥ max(b2, b3). Apply the theorem 8
twice to obtain

∑
sym

xa1ya2za3 =
∑

cyclic

za3(xa1ya2 + xa2ya1)

≥
∑

cyclic

za3(xa1+a2−b1yb1 + xb1ya1+a2−b1)

=
∑

cyclic

xb1(ya1+a2−b1za3 + ya3za1+a2−b1)

≥
∑

cyclic

xb1(yb2zb3 + yb3zb2)

=
∑
sym

xb1yb2zb3 .

Case 2. b1 ≤ a2 : It follows from 3b1 ≥ b1+b2+b3 = a1+a2+a3 ≥ b1+a2+a3 that b1 ≥ a2+a3−b1
and that a1 ≥ a2 ≥ b1 ≥ a2 + a3 − b1. Therefore, we have max(a2, a3) ≥ max(b1, a2 + a3 − b1) and
max(a1, a2 + a3 − b1) ≥ max(b2, b3). Apply the theorem 8 twice to obtain

∑
sym

xa1ya2za3 =
∑

cyclic

xa1(ya2za3 + ya3za2)

≥
∑

cyclic

xa1(yb1za2+a3−b1 + ya2+a3−b1zb1)

=
∑

cyclic

yb1(xa1za2+a3−b1 + xa2+a3−b1za1)

≥
∑

cyclic

yb1(xb2zb3 + xb3zb2)

=
∑
sym

xb1yb2zb3 .

Remark 3.2.2. The equality holds if and only if x = y = z. However, if we allow x = 0 or y = 0
or z = 0, then one may easily check that the equality holds when a1, a2, a3 > 0 and b1, b2, b3 > 0 if
and only if

x = y = z or x = y, z = 0 or y = z, x = 0 or z = x, y = 0.

We can use Muirhead’s theorem to prove Nesbitt’s inequality.
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(Nesbitt) For all positive real numbers a, b, c, we have

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Proof 6. Clearing the denominators of the inequality, it becomes

2
∑

cyclic

a(a+ b)(a+ c) ≥ 3(a+ b)(b+ c)(c+ a) or
∑
sym

a3 ≥
∑
sym

a2b.

(IMO 1995) Let a, b, c be positive numbers such that abc = 1. Prove that

1
a3(b+ c)

+
1

b3(c+ a)
+

1
c3(a+ b)

≥ 3
2
.

Second Solution. It’s equivalent to

1
a3(b+ c)

+
1

b3(c+ a)
+

1
c3(a+ b)

≥ 3
2(abc)4/3

.

Set a = x3, b = y3, c = z3 with x, y, z > 0. Then, it becomes
∑

cyclic
1

x9(y3+z3)
≥ 3

2x4y4z4 . Clearing
denominators, this becomes

∑
sym

x12y12 + 2
∑
sym

x12y9z3 +
∑
sym

x9y9z6 ≥ 3
∑
sym

x11y8z5 + 6x8y8z8

or
(∑

sym

x12y12 −
∑
sym

x11y8z5

)
+ 2

(∑
sym

x12y9z3 −
∑
sym

x11y8z5

)
+

(∑
sym

x9y9z6 −
∑
sym

x8y8z8

)
≥ 0,

and every term on the left hand side is nonnegative by Muirhead’s theorem.

Problem 27. (Iran 1996) Let x, y, z be positive real numbers. Prove that

(xy + yz + zx)
(

1
(x+ y)2

+
1

(y + z)2
+

1
(z + x)2

)
≥ 9

4
.

Proof. It’s equivalent to

4
∑
sym

x5y + 2
∑

cyclic

x4yz + 6x2y2z2 −
∑
sym

x4y2 − 6
∑

cyclic

x3y3 − 2
∑
sym

x3y2z ≥ 0.

We rewrite this as following

(∑
sym

x5y −
∑
sym

x4y2

)
+ 3

(∑
sym

x5y −
∑
sym

x3y3

)
+ 2xyz


3xyz +

∑

cyclic

x3 −
∑
sym

x2y


 ≥ 0.

By Muirhead’s theorem and Schur’s inequality, it’s a sum of three nonnegative terms.

Problem 28. Let x, y, z be nonnegative real numbers with xy + yz + zx = 1. Prove that

1
x+ y

+
1

y + z
+

1
z + x

≥ 5
2
.
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Proof. Using xy + yz + zx = 1, we homogenize the given inequality as following :

(xy + yz + zx)
(

1
x+ y

+
1

y + z
+

1
z + x

)2

≥
(

5
2

)2

or
4
∑
sym

x5y +
∑
sym

x4yz + 14
∑
sym

x3y2z + 38x2y2z2 ≥
∑
sym

x4y2 + 3
∑
sym

x3y3

or
(∑

sym

x5y −
∑
sym

x4y2

)
+ 3

(∑
sym

x5y −
∑
sym

x3y3

)
+ xyz

(∑
sym

x3 + 14
∑
sym

x2y + 38xyz

)
≥ 0.

By Muirhead’s theorem, we get the result. In the above inequality, without the condition xy +
yz + zx = 1, the equality holds if and only if x = y, z = 0 or y = z, x = 0 or z = x, y = 0. Since
xy + yz + zx = 1, the equality occurs when (x, y, z) = (1, 1, 0), (1, 0, 1), (0, 1, 1).
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3.3 Normalizations

In the previous sections, we transformed non-homogeneous inequalities into homogeneous ones. On
the other hand, homogeneous inequalities also can be normalized in various ways. We offer two
alternative solutions of the problem 8 by normalizations :

(IMO 2001/2) Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Third Solution. We make the substitution x = a
a+b+c , y = b

a+b+c , z = c
a+b+c .

2 The problem is

xf(x2 + 8yz) + yf(y2 + 8zx) + zf(z2 + 8xy) ≥ 1,

where f(t) = 1√
t
. Since f is convex on R+ and x + y + z = 1, we apply (the weighted) Jensen’s

inequality to obtain

xf(x2 + 8yz) + yf(y2 + 8zx) + zf(z2 + 8xy) ≥ f(x(x2 + 8yz) + y(y2 + 8zx) + z(z2 + 8xy)).

Note that f(1) = 1. Since the function f is strictly decreasing, it suffices to show that

1 ≥ x(x2 + 8yz) + y(y2 + 8zx) + z(z2 + 8xy).

Using x+ y + z = 1, we homogenize it as (x+ y + z)3 ≥ x(x2 + 8yz) + y(y2 + 8zx) + z(z2 + 8xy).
However, this is easily seen from

(x+ y + z)3 − x(x2 + 8yz)− y(y2 + 8zx)− z(z2 + 8xy) = 3[x(y − z)2 + y(z − x)2 + z(x− y)2] ≥ 0.

In the above solution, we normalized to x + y + z = 1. We now prove it by normalizing to
xyz = 1.

Fourth Solution. We make the substitution x = bc
a2 , y = ca

b2
, z = ab

c2
. Then, we get xyz = 1 and the

inequality becomes
1√

1 + 8x
+

1√
1 + 8y

+
1√

1 + 8z
≥ 1

which is equivalent to
∑

cyclic

√
(1 + 8x)(1 + 8y) ≥

√
(1 + 8x)(1 + 8y)(1 + 8z).

After squaring both sides, it’s equivalent to

8(x+ y + z) + 2
√

(1 + 8x)(1 + 8y)(1 + 8z)
∑

cyclic

√
1 + 8x ≥ 510.

Recall that xyz = 1. The AM-GM inequality gives us x+ y + z ≥ 3,

(1 + 8x)(1 + 8y)(1 + 8z) ≥ 9x
8
9 · 9y 8

9 · 9z 8
9 = 729 and

∑

cyclic

√
1 + 8x ≥

∑

cyclic

√
9x

8
9 ≥ 9(xyz)

4
27 = 9.

Using these three inequalities, we get the result.

2Dividing by a+ b+ c gives the equivalent inequality
P

cyclic

a
a+b+cr

a2
(a+b+c)2

+ 8bc
(a+b+c)2

≥ 1.
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(IMO 1983/6) Let a, b, c be the lengths of the sides of a triangle. Prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Second Solution. After setting a = y + z, b = z + x, c = x+ y for x, y, z > 0, it becomes

x3z + y3x+ z3y ≥ x2yz + xy2z + xyz2 or
x2

y
+
y2

z
+
z2

x
≥ x+ y + z.

Since it’s homogeneous, we can restrict our attention to the case x+ y + z = 1. Then, it becomes

yf

(
x

y

)
+ zf

(y
z

)
+ xf

( z
x

)
≥ 1,

where f(t) = t2. Since f is convex on R, we apply (the weighted) Jensen’s inequality to obtain

yf

(
x

y

)
+ zf

(y
z

)
+ xf

( z
x

)
≥ f

(
y · x

y
+ z · y

z
+ x · z

x

)
= f(1) = 1.

Problem 29. (KMO Winter Program Test 2001) Prove that, for all a, b, c > 0,
√

(a2b+ b2c+ c2a) (ab2 + bc2 + ca2) ≥ abc+ 3
√

(a3 + abc) (b3 + abc) (c3 + abc)

First Solution. Dividing by abc, it becomes
√(

a

c
+
b

a
+
c

b

)(
c

a
+
a

b
+
b

c

)
≥ abc+ 3

√(
a2

bc
+ 1
)(

b2

ca
+ 1
)(

c2

ab
+ 1
)
.

After the substitution x = a
b , y = b

c , z = c
a , we obtain the constraint xyz = 1. It takes the form

√
(x+ y + z) (xy + yz + zx) ≥ 1 + 3

√(x
z

+ 1
)(y

x
+ 1
)(z

y
+ 1
)
.

From the constraint xyz = 1, we find two identities
(x
z

+ 1
)(y

x
+ 1
)(z

y
+ 1
)

=
(
x+ z

z

)(
y + x

x

)(
z + y

y

)
= (z + x)(x+ y)(y + z),

(x+ y + z) (xy + yz + zx) = (x+ y)(y + z)(z + x) + xyz = (x+ y)(y + z)(z + x) + 1.

Letting p = 3
√

(x+ y)(y + z)(z + x), the inequality now becomes
√
p3 + 1 ≥ 1 + p. Applying the

AM-GM inequality, we have p ≥ 3

√
2
√
xy · 2√yz · 2√zx = 2. It follows that (p3 + 1)− (1 + p)2 =

p(p+ 1)(p− 2) ≥ 0.

Problem 30. (IMO 1999/2) Let n be an integer with n ≥ 2.

(a) Determine the least constant C such that the inequality

∑

1≤i<j≤n
xixj(x2

i + x2
j ) ≤ C


 ∑

1≤i≤n
xi




4

holds for all real numbers x1, · · · , xn ≥ 0.
(b) For this constant C, determine when equality holds.
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First Solution. (Marcin E. Kuczma3) For x1 = · · · = xn = 0, it holds for any C ≥ 0. Hence, we
consider the case when x1 + · · ·+ xn > 0. Since the inequality is homogeneous, we may normalize
to x1 + · · ·+ xn = 1. We denote

F (x1, · · · , xn) =
∑

1≤i<j≤n
xixj(x2

i + x2
j ).

From the assumption x1 + · · ·+ xn = 1, we have

F (x1, · · · , xn) =
∑

1≤i<j≤n
xi

3xj +
∑

1≤i<j≤n
xixj

3 =
∑

1≤i≤n
xi

3
∑

j 6=i
xi =

∑

1≤i≤n
xi

3(1− xi)

=
n∑

i=1

xi(xi2 − xi3).

We claim that C = 1
8 . It suffices to show that

F (x1, · · · , xn) ≤ 1
8

= F

(
1
2
,
1
2
, 0, · · · , 0

)
.

Lemma 3.3.1. 0 ≤ x ≤ y ≤ 1
2 implies x2 − x3 ≤ y2 − y3.

Proof. Since x+ y ≤ 1, we get x+ y ≥ (x+ y)2 ≥ x2 + xy + y2. Since y − x ≥ 0, this implies that
y2 − x2 ≥ y3 − x3 or y2 − y3 ≥ x2 − x3, as desired.

Case 1. 1
2 ≥ x1 ≥ x2 ≥ · · · ≥ xn

n∑

i=1

xi(xi2 − xi3) ≤
n∑

i=1

xi

((
1
2

)2

−
(

1
2

)3
)

=
1
8

n∑

i=1

xi =
1
8
.

Case 2. x1 ≥ 1
2 ≥ x2 ≥ · · · ≥ xn Let x1 = x and y = 1− x = x2 + · · ·+ xn. Since y ≥ x2, · · · , xn,

F (x1, · · · , xn) = x3y +
n∑

i=2

xi(xi2 − xi3) ≤ x3y +
n∑

i=2

xi(y2 − y3) = x3y + y(y2 − y3).

Since x3y + y(y2 − y3) = x3y + y3(1− y) = xy(x2 + y2), it remains to show that

xy(x2 + y2) ≤ 1
8
.

Using x+ y = 1, we homogenize the above inequality as following.

xy(x2 + y2) ≤ 1
8

(x+ y)4.

However, we immediately find that (x+ y)4 − 8xy(x2 + y2) = (x− y)4 ≥ 0.

Exercise 12. (IMO unused 1991) Let n be a given integer with n ≥ 2. Find the maximum value
of ∑

1≤i<j≤n
xixj(xi + xj),

where x1, · · · , xn ≥ 0 and x1 + · · ·+ xn = 1.
3I slightly modified his solution in [Au99].

45



We close this section with another proofs of Nesbitt’s inequality.

(Nesbitt) For all positive real numbers a, b, c, we have

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Proof 7. We may normalize to a + b + c = 1. Note that 0 < a, b, c < 1. The problem is now to
prove ∑

cyclic

a

b+ c
=
∑

cyclic

f(a) ≥ 3
2
, where f(x) =

x

1− x.

Since f is convex on (0, 1), Jensen’s inequality shows that

1
3

∑

cyclic

f(a) ≥ f
(
a+ b+ c

3

)
= f

(
1
3

)
=

1
2

or
∑

cyclic

f(a) ≥ 3
2
.

Proof 8. (Cao Minh Quang) Assume that a+b+c = 1. Note that ab+bc+ca ≤ 1
3(a+b+c)2 = 1

3 .
More strongly, we establish that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3− 9

2
(ab+ bc+ ca)

or (
a

b+ c
+

9a(b+ c)
4

)
+
(

b

c+ a
+

9b(c+ a)
4

)
+
(

c

a+ b
+

9c(a+ b)
4

)
≥ 3.

The AM-GM inequality shows that

∑

cyclic

a

b+ c
+

9a(b+ c)
4

≥
∑

cyclic

2

√
a

b+ c
· 9a(b+ c)

4
=
∑

cyclic

3a = 3.

Proof 9. We now break the symmetry by a suitable normalization. Since the inequality is symmetric
in the three variables, we may assume that a ≥ b ≥ c. After the substitution x = a

c , y = b
c , we have

x ≥ y ≥ 1. It becomes

a
c

b
c + 1

+
b
c

a
c + 1

+
1

a
c + b

c

≥ 3
2
or

x

y + 1
+

y

x+ 1
≥ 3

2
− 1
x+ y

.

We apply the AM-GM inequality to obtain

x+ 1
y + 1

+
y + 1
x+ 1

≥ 2 or
x

y + 1
+

y

x+ 1
≥ 2− 1

y + 1
+

1
x+ 1

.

It’s enough to show that

2− 1
y + 1

+
1

x+ 1
≥ 3

2
− 1
x+ y

⇔ 1
2
− 1
y + 1

≥ 1
x+ 1

− 1
x+ y

⇔ y − 1
2(1 + y)

≥ y − 1
(x+ 1)(x+ y)

.

However, the last inequality clearly holds for x ≥ y ≥ 1.

Proof 10. As in the previous proof, we may normalize to c = 1 with the assumption a ≥ b ≥ 1.
We prove

a

b+ 1
+

b

a+ 1
+

1
a+ b

≥ 3
2
.
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Let A = a+ b and B = ab. It becomes

a2 + b2 + a+ b

(a+ 1)(b+ 1)
+

1
a+ b

≥ 3
2
or

A2 − 2B +A

A+B + 1
+

1
A
≥ 3

2
or 2A3 −A2 −A+ 2 ≥ B(7A− 2).

Since 7A− 2 > 2(a+ b− 1) > 0 and A2 = (a+ b)2 ≥ 4ab = 4B, it’s enough to show that

4(2A3 −A2 −A+ 2) ≥ A2(7A− 2) ⇔ A3 − 2A2 − 4A+ 8 ≥ 0.

However, it’s easy to check that A3 − 2A2 − 4A+ 8 = (A− 2)2(A+ 2) ≥ 0.
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3.4 Cauchy-Schwarz Inequality and Hölder’s Inequality

We begin with the following famous theorem:

Theorem 3.4.1. (The Cauchy-Schwarz inequality) Let a1, · · · , an, b1, · · · , bn be real numbers.
Then,

(a1
2 + · · ·+ an

2)(b12 + · · ·+ bn
2) ≥ (a1b1 + · · ·+ anbn)2.

Proof. Let A =
√
a1

2 + · · ·+ an2 and B =
√
b1

2 + · · ·+ bn
2. In the case when A = 0, we get

a1 = · · · = an = 0. Thus, the given inequality clearly holds. So, we may assume that A,B > 0. We
may normalize to

1 = a1
2 + · · ·+ an

2 = b1
2 + · · ·+ bn

2.

Hence, we need to to show that
|a1b1 + · · ·+ anbn| ≤ 1.

We now apply the AM-GM inequality to deduce

|x1y1 + · · ·+ xnyn| ≤ |x1y1|+ · · ·+ |xnyn| ≤ x1
2 + y1

2

2
+ · · ·+ xn

2 + yn
2

2
= 1.

Exercise 13. Prove the Lagrange identity :
(

n∑

i=1

ai
2

)(
n∑

i=1

bi
2

)
−
(

n∑

i=1

aibi

)2

=
∑

1≤i<j≤n
(aibj − ajbi)2 .

Exercise 14. (Darij Grinberg) Suppose that 0 < a1 ≤ · · · ≤ an and 0 < b1 ≤ · · · ≤ bn be real
numbers. Show that

1
4

(
n∑

k=1

ak

)2( n∑

k=1

bk

)2

>

(
n∑

k=1

ak
2

)(
n∑

k=1

bk
2

)
−
(

n∑

k=1

akbk

)2

Exercise 15. ([PF], S. S. Wagner) Let a1, · · · , an, b1, · · · , bn be real numbers. Suppose that
x ∈ [0, 1]. Show that




n∑

i=1

ai
2 + 2x

∑

i<j

aiaj






n∑

i=1

bi
2 + 2x

∑

i<j

bibj


 ≥




n∑

i=1

aibi + x
∑

i≤j
aibj




2

.

Exercise 16. Let a1, · · · , an, b1, · · · , bn be positive real numbers. Show that
√

(a1 + · · ·+ an)(b1 + · · ·+ bn) ≥
√
a1b1 + · · ·+

√
anbn.

Exercise 17. Let a1, · · · , an, b1, · · · , bn be positive real numbers. Show that

a1
2

b1
+ · · ·+ an

2

bn
≥ (a1 + · · ·+ an)2

b1 + · · ·+ bn
.

Exercise 18. Let a1, · · · , an, b1, · · · , bn be positive real numbers. Show that

a1

b1
2 + · · ·+ an

bn
2 ≥

1
a1 + · · ·+ an

(
a1

b1
+ · · ·+ an

bn

)2

.
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Exercise 19. Let a1, · · · , an, b1, · · · , bn be positive real numbers. Show that

a1

b1
+ · · ·+ an

bn
≥ (a1 + · · ·+ an)2

a1b1 + · · ·+ anbn
.

As an application of the Cauchy-Schwarz inequality, we give a different solution of the following
problem.

(Iran 1998) Prove that, for all x, y, z > 1 such that 1
x + 1

y + 1
z = 2,

√
x+ y + z ≥ √x− 1 +

√
y − 1 +

√
z − 1.

Third Solution. We note that x−1
x + y−1

y + z−1
z = 1. Apply the Cauchy-Schwarz inequality to deduce

√
x+ y + z =

√
(x+ y + z)

(
x− 1
x

+
y − 1
y

+
z − 1
z

)
≥ √x− 1 +

√
y − 1 +

√
z − 1.

We now apply the Cauchy-Schwarz inequality to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbers a, b, c, we have

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Proof 11. Applying the Cauchy-Schwarz inequality, we have

((b+ c) + (c+ a) + (a+ b))
(

1
b+ c

+
1

c+ a
+

1
a+ b

)
≥ 32.

It follows that

a+ b+ c

b+ c
+
a+ b+ c

c+ a
+
a+ b+ c

a+ b
≥ 9

2
or 3 +

∑

cyclic

a

b+ c
≥ 9

2
.

Proof 12. The Cauchy-Schwarz inequality yields

∑

cyclic

a

b+ c

∑

cyclic

a(b+ c) ≥

∑

cyclic

a




2

or
∑

cyclic

a

b+ c
≥ (a+ b+ c)2

2(ab+ bc+ ca)
≥ 3

2
.

Problem 31. (Gazeta Matematicã) Prove that, for all a, b, c > 0,
√
a4 + a2b2 + b4 +

√
b4 + b2c2 + c4 +

√
c4 + c2a2 + a4 ≥ a

√
2a2 + bc+ b

√
2b2 + ca+ c

√
2c2 + ab.
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Solution. We obtain the chain of equalities and inequalities

∑

cyclic

√
a4 + a2b2 + b4 =

∑

cyclic

√(
a4 +

a2b2

2

)
+
(
b4 +

a2b2

2

)

≥ 1√
2

∑

cyclic

(√
a4 +

a2b2

2
+

√
b4 +

a2b2

2

)
(Cauchy − Schwarz)

=
1√
2

∑

cyclic

(√
a4 +

a2b2

2
+

√
a4 +

a2c2

2

)

≥
√

2
∑

cyclic

4

√(
a4 +

a2b2

2

)(
a4 +

a2c2

2

)
(AM−GM)

≥
√

2
∑

cyclic

√
a4 +

a2bc

2
(Cauchy − Schwarz)

=
∑

cyclic

√
2a4 + a2bc .

Here is an ingenious solution of

(KMO Winter Program Test 2001) Prove that, for all a, b, c > 0,
√

(a2b+ b2c+ c2a) (ab2 + bc2 + ca2) ≥ abc+ 3
√

(a3 + abc) (b3 + abc) (c3 + abc)

Second Solution. (based on work by an winter program participant) We obtain
√

(a2b+ b2c+ c2a) (ab2 + bc2 + ca2)

=
1
2

√
[b(a2 + bc) + c(b2 + ca) + a(c2 + ab)] [c(a2 + bc) + a(b2 + ca) + b(c2 + ab)]

≥ 1
2

(√
bc(a2 + bc) +

√
ca(b2 + ca) +

√
ab(c2 + ab)

)
(Cauchy − Schwarz)

≥ 3
2

3

√√
bc(a2 + bc) · √ca(b2 + ca) ·

√
ab(c2 + ab) (AM−GM)

=
1
2

3
√

(a3 + abc) (b3 + abc) (c3 + abc) + 3
√

(a3 + abc) (b3 + abc) (c3 + abc)

≥ 1
2

3

√
2
√
a3 · abc · 2

√
b3 · abc · 2

√
c3 · abc+ 3

√
(a3 + abc) (b3 + abc) (c3 + abc) (AM−GM)

= abc+ 3
√

(a3 + abc) (b3 + abc) (c3 + abc).

Problem 32. (Andrei Ciupan) Let a, b, c be positive real numbers such that

1
a+ b+ 1

+
1

b+ c+ 1
+

1
c+ a+ 1

≥ 1.

Show that a+ b+ c ≥ ab+ bc+ ca.
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First Solution. (by Andrei Ciupan) By applying the Cauchy-Schwarz inequality, we obtain

(a+ b+ 1)(a+ b+ c2) ≥ (a+ b+ c)2

or
1

a+ b+ 1
≤ c2 + a+ b

(a+ b+ c)2
.

Now by summing cyclically, we obtain

1
a+ b+ 1

+
1

b+ c+ 1
+

1
c+ a+ 1

≤ a2 + b2 + c2 + 2(a+ b+ c)
(a+ b+ c)2

But from the condition, we can see that

a2 + b2 + c2 + 2(a+ b+ c) ≥ (a+ b+ c)2,

and therefore
a+ b+ c ≥ ab+ bc+ ca.

We see that the equality occurs if and only if a = b = c = 1.

Second Solution. (by Cezar Lupu) We first observe that

2 ≥
∑

cyclic

(
1− 1

a+ b+ 1

)
=
∑

cyclic

a+ b

a+ b+ 1
=
∑

cyclic

(a+ b)2

(a+ b)2 + a+ b
.

Apply the Cauchy-Schwarz inequality to get

2 ≥
∑

cyclic

(a+ b)2

(a+ b)2 + a+ b
≥ (

∑
a+ b)2

∑
(a+ b)2 + a+ b

=
4
∑
a2 + 8

∑
ab

2
∑
a2 + 2

∑
ab+ 2

∑
a
.

or
a+ b+ c ≥ ab+ bc+ ca.

We now illustrate normalization techniques to establish classical theorems. Using the same idea
in the proof of the Cauchy-Schwarz inequality, we find a natural generalization :

Theorem 3.4.2. Let aij(i, j = 1, · · · , n) be positive real numbers. Then, we have

(a11
n + · · ·+ a1n

n) · · · (an1
n + · · ·+ ann

n) ≥ (a11a21 · · · an1 + · · ·+ a1na2n · · · ann)n.

Proof. Since the inequality is homogeneous, as in the proof of the theorem 11, we can normalize to

(ai1n + · · ·+ ain
n)

1
n = 1 or ai1

n + · · ·+ ain
n = 1 (i = 1, · · · , n).

Then, the inequality takes the form a11a21 · · · an1 + · · ·+a1na2n · · · ann ≤ 1 or
∑n

i=1 ai1 · · · ain ≤ 1.
Hence, it suffices to show that, for all i = 1, · · · , n,

ai1 · · · ain ≤ 1
n
, where ai1

n + · · ·+ ain
n = 1.

To finish the proof, it remains to show the following homogeneous inequality :
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Theorem 3.4.3. (AM-GM inequality) Let a1, · · · , an be positive real numbers. Then, we have

a1 + · · ·+ an
n

≥ n
√
a1 · · · an.

Proof. Since it’s homogeneous, we may rescale a1, · · · , an so that a1 · · · an = 1. 4 We want to
show that

a1 · · · an = 1 =⇒ a1 + · · ·+ an ≥ n.
The proof is by induction on n. If n = 1, it’s trivial. If n = 2, then we get a1 + a2 − 2 =
a1 + a2 − 2

√
a1a2 = (

√
a1 − √a2)2 ≥ 0. Now, we assume that it holds for some positive integer

n ≥ 2. And let a1, · · · , an+1 be positive numbers such that a1 · · · anan+1=1. We may assume that
a1 ≥ 1 ≥ a2. (Why?) It follows that a1a2+1−a1−a2 = (a1−1)(a2−1) ≤ 0 so that a1a2+1 ≤ a1+a2.
Since (a1a2)a3 · · · an = 1, by the induction hypothesis, we have a1a2 + a3 + · · ·+ an+1 ≥ n. Hence,
a1 + a2 − 1 + a3 + · · ·+ an+1 ≥ n.

The following simple observation is not tricky :

Let a, b > 0 and m,n ∈ N. Take x1 = · · · = xm = a and xm+1 = · · · = xxm+n = b.
Applying the AM-GM inequality to x1, · · · , xm+n > 0, we obtain

ma+ nb

m+ n
≥ (ambn)

1
m+n or

m

m+ n
a+

n

m+ n
b ≥ a m

m+n b
n

m+n .

Hence, for all positive rationals ω1 and ω2 with ω1 + ω2 = 1, we get

ω1 a+ ω2 b ≥ a ω1b ω2 .

We immediately have

Theorem 3.4.4. Let ω1, ω2 > 0 with ω1 + ω2 = 1. For all x, y > 0, we have

ω1 x+ ω2 y ≥ x ω1y ω2 .

Proof. We can choose a positive rational sequence a1, a2, a3, · · · such that

lim
n→∞ an = ω1.

And letting bi = 1− ai, we get
lim
n→∞ bn = ω2.

From the previous observation, we have

an x+ bn y ≥ xanybn

By taking the limits to both sides, we get the result.

Modifying slightly the above arguments, we see that the AM-GM inequality implies that

Theorem 3.4.5. (Weighted AM-GM inequality) Let ω1, · · · , ωn > 0 with ω1 + · · · + ωn = 1.
For all x1, · · · , xn > 0, we have

ω1 x1 + · · ·+ ωn xn ≥ x1
ω1 · · ·xn ωn .

4Set xi = ai

(a1···an)
1
n

(i = 1, · · · , n). Then, we get x1 · · ·xn = 1 and it becomes x1 + · · ·+ xn ≥ n.
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Alternatively, we find that it is a straightforward consequence of the concavity of lnx. Indeed,
the weighted Jensen’s inequality says that ln(ω1 x1 + · · ·+ ωn xn) ≥ ω1 ln(x1) + · · ·+ ωn ln(xn) =
ln(x1

ω1 · · ·xn ωn).

Recall that the AM-GM inequality is used to deduce the theorem 18, which is a generalization of
the Cauchy-Schwarz inequality. Since we now get the weighted version of the AM-GM inequality,
we establish weighted version of the Cauchy-Schwarz inequality.

Theorem 3.4.6. (Hölder) Let xij (i = 1, · · · ,m, j = 1, · · ·n) be positive real numbers. Suppose
that ω1, · · · , ωn are positive real numbers satisfying ω1 + · · ·+ ωn = 1. Then, we have

n∏

j=1

(
m∑

i=1

xij

)ωj
≥

m∑

i=1




n∏

j=1

xij
ωj


 .

Proof. Because of the homogeneity of the inequality, as in the proof of the theorem 12, we may
rescale x1j , · · · , xmj so that x1j + · · · + xmj = 1 for each j ∈ {1, · · · , n}. Then, we need to show
that

n∏

j=1

1ωj ≥
m∑

i=1

n∏

j=1

xij
ωj or 1 ≥

m∑

i=1

n∏

j=1

xij
ωj .

The weighted AM-GM inequality provides that

n∑

j=1

ωjxij ≥
n∏

j=1

xij
ωj (i ∈ {1, · · · ,m}) =⇒

m∑

i=1

n∑

j=1

ωjxij ≥
m∑

i=1

n∏

j=1

xij
ωj .

However, we immediately have

m∑

i=1

n∑

j=1

ωjxij =
n∑

j=1

m∑

i=1

ωjxij =
n∑

j=1

ωj

(
m∑

i=1

xij

)
=

n∑

j=1

ωj = 1.
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Chapter 4

Convexity

Any good idea can be stated in fifty words or less. S. M. Ulam

4.1 Jensen’s Inequality

In the previous chapter, we deduced the weighted AM-GM inequality from the AM-GM inequality.
We use the same idea to study the following functional inequalities.

Proposition 4.1.1. Let f : [a, b] −→ R be a continuous function. Then, the followings are
equivalent.

(1) For all n ∈ N, the following inequality holds.

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn)

for all x1, · · · , xn ∈ [a, b] and ω1, · · · , ωn > 0 with ω1 + · · ·+ ωn = 1.
(2) For all n ∈ N, the following inequality holds.

r1f(x1) + · · ·+ rnf(xn) ≥ f(r1 x1 + · · ·+ rn xn)

for all x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1.
(3) For all N ∈ N, the following inequality holds.

f(y1) + · · ·+ f(yN )
N

≥ f
(
y1 + · · ·+ yN

N

)

for all y1, · · · , yN ∈ [a, b].
(4) For all k ∈ {0, 1, 2, · · · }, the following inequality holds.

f(y1) + · · ·+ f(y2k)
2k

≥ f
(
y1 + · · ·+ y2k

2k

)

for all y1, · · · , y2k ∈ [a, b].
(5) We have 1

2f(x) + 1
2f(y) ≥ f (x+y

2

)
for all x, y ∈ [a, b].

(6) We have λf(x) + (1− λ)f(y) ≥ f (λx+ (1− λ)y) for all x, y ∈ [a, b] and λ ∈ (0, 1).

Proof. (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) is obvious.

(2)⇒ (1) : Let x1, · · · , xn ∈ [a, b] and ω1, · · · , ωn > 0 with ω1 + · · ·+ ωn = 1. One may see that
there exist positive rational sequences {rk(1)}k∈N, · · · , {rk(n)}k∈N satisfying

lim
k→∞

rk(j) = wj (1 ≤ j ≤ n) and rk(1) + · · ·+ rk(n) = 1 for all k ∈ N.
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By the hypothesis in (2), we obtain rk(1)f(x1) + · · · + rk(n)f(xn) ≥ f(rk(1) x1 + · · · + rk(n) xn).
Since f is continuous, taking k →∞ to both sides yields the inequality

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn).

(3) ⇒ (2) : Let x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 + · · · + rn = 1. We can find a
positive integer N ∈ N so that Nr1, · · · , Nrn ∈ N. For each i ∈ {1, · · · , n}, we can write ri = pi

N ,
where pi ∈ N. It follows from r1 + · · ·+ rn = 1 that N = p1 + · · ·+ pn. Then, (3) implies that

r1f(x1) + · · ·+ rnf(xn)

=

p1 terms︷ ︸︸ ︷
f(x1) + · · ·+ f(x1) + · · ·+

pn terms︷ ︸︸ ︷
f(xn) + · · ·+ f(xn)

N

≥ f




p1 terms︷ ︸︸ ︷
x1 + · · ·+ x1 + · · ·+

pn terms︷ ︸︸ ︷
xn + · · ·+ xn

N




= f(r1 x1 + · · ·+ rn xn).

(4)⇒ (3) : Let y1, · · · , yN ∈ [a, b]. Take a large k ∈ N so that 2k > N . Let a = y1+···+yN
N . Then,

(4) implies that

f(y1) + · · ·+ f(yN ) + (2k − n)f(a)
2k

=
f(y1) + · · ·+ f(yN ) +

(2k −N) terms︷ ︸︸ ︷
f(a) + · · ·+ f(a)

2k

≥ f



y1 + · · ·+ yN +

(2k −N) terms︷ ︸︸ ︷
a+ · · ·+ a

2k




= f(a)

so that

f(y1) + · · ·+ f(yN ) ≥ Nf(a) = Nf

(
y1 + · · ·+ yN

N

)
.

(5)⇒ (4) : We use induction on k. In case k = 0, 1, 2, it clearly holds. Suppose that (4) holds for
some k ≥ 2. Let y1, · · · , y2k+1 ∈ [a, b]. By the induction hypothesis, we obtain

f(y1) + · · ·+ f(y2k) + f(y2k+1) + · · ·+ f(y2k+1)

≥ 2kf
(
y1 + · · ·+ y2k

2k

)
+ 2kf

(
y2k+1 + · · ·+ y2k+1

2k

)

= 2k+1
f
(
y1+···+ y

2k

2k

)
+ f

(
y
2k+1

+···+ y
2k+1

2k

)

2

≥ 2k+1f

( y1+···+ y
2k

2k
+

y
2k+1

+···+ y
2k+1

2k

2

)

= 2k+1f

(
y1 + · · ·+ y2k+1

2k+1

)
.
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Hence, (4) holds for k + 1. This completes the induction.
So far, we’ve established that (1), (2), (3), (4), (5) are all equivalent. Since (1) ⇒ (6) ⇒ (5) is

obvious, this completes the proof.

Definition 4.1.1. A real valued function f is said to be convex on [a, b] if

λf(x) + (1− λ)f(y) ≥ f (λx+ (1− λ)y)

for all x, y ∈ [a, b] and λ ∈ (0, 1).

The above proposition says that

Corollary 4.1.1. (Jensen’s inequality) Let f : [a, b] −→ R be a continuous convex function. For
all x1, · · · , xn ∈ [a, b], we have

f(x1) + · · ·+ f(xn)
n

≥ f
(
x1 + · · ·+ xn

n

)
.

Corollary 4.1.2. (Weighted Jensen’s inequality) Let f : [a, b] −→ R be a continuous convex
function. Let ω1, · · · , ωn > 0 with ω1 + · · ·+ ωn = 1. For all x1, · · · , xn ∈ [a, b], we have

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn).

In fact, we can almost drop the continuity of f . As an exercise, show that every convex function
on [a, b] is continuous on (a, b). So, every convex function on R is continuous on R. By the
proposition again, we get

Corollary 4.1.3. (Convexity Criterion I) Let f : [a, b] −→ R be a continuous function. Suppose
that

f(x) + f(y)
2

≥ f
(
x+ y

2

)

for all x, y ∈ [a, b]. Then, f is a convex function on [a, b].

Exercise 20. (Convexity Criterion II) Let f : [a, b] −→ R be a continuous function which are
differentiable twice in (a, b). Show that the followings are equivalent.

(1) f ′′(x) ≥ 0 for all x ∈ (a, b).
(2) f is convex on (a, b).

When we deduce (5)⇒ (4)⇒ (3)⇒ (2) in the proposition, we didn’t use the continuity of f :

Corollary 4.1.4. Let f : [a, b] −→ R be a function. Suppose that

f(x) + f(y)
2

≥ f
(
x+ y

2

)

for all x, y ∈ [a, b]. Then, we have

r1f(x1) + · · ·+ rnf(xn) ≥ f(r1 x1 + · · ·+ rn xn)

for all x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1.

We close this section by presenting an well-known inductive proof of the weighted Jensen’s
inequality. It turns out that we can completely drop the continuity of f .
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Second Proof. It clearly holds for n = 1, 2. We now assume that it holds for some n ∈ N. Let
x1, · · · , xn, xn+1 ∈ [a, b] and ω1, · · · , ωn+1 > 0 with ω1+· · ·+ωn+1 = 1. Since ω1

1−ωn+1
+· · ·+ ωn

1−ωn+1
=

1, it follows from the induction hypothesis that

ω1f(x1) + · · ·+ ωn+1f(xn+1)

= (1− ωn+1)
(

ω1

1− ωn+1
f(x1) + · · ·+ ωn

1− ωn+1
f(xn)

)
+ ωn+1f(xn+1)

≥ (1− ωn+1)f
(

ω1

1− ωn+1
x1 + · · ·+ ωn

1− ωn+1
xn

)
+ ωn+1f(xn+1)

≥ f

(
(1− ωn+1)

[
ω1

1− ωn+1
x1 + · · ·+ ωn

1− ωn+1
xn

]
+ ωn+1xn+1

)

= f(ω1x1 + · · ·+ ωn+1xn+1).
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4.2 Power Means

Convexity is one of the most important concepts in analysis. Jensen’s inequality is the most
powerful tool in theory of inequalities. In this section, we shall establish the Power Mean inequality
by applying Jensen’s inequality in two ways. We begin with two simple lemmas.

Lemma 4.2.1. Let a, b, and c be positive real numbers. Let us define a function f : R −→ R by

f(x) = ln
(
ax + bx + cx

3

)
,

where x ∈ R. Then, we obtain f ′(0) = ln (abc)
1
3 .

Proof. We compute f ′(x) = ax ln a+bx ln b+cx ln c
ax+bx+cx . Then, f ′(0) = ln a+ln b+ln c

3 = ln (abc)
1
3 .

Lemma 4.2.2. Let f : R −→ R be a continuous function. Suppose that f is monotone increasing
on (0,∞) and monotone increasing on (−∞, 0). Then, f is monotone increasing on R.

Proof. We first show that f is monotone increasing on [0,∞). By the hypothesis, it remains to
show that f(x) ≥ f(0) for all x > 0. For all ε ∈ (0, x), we have f(x) ≥ f(ε). Since f is continuous
at 0, we obtain

f(x) ≥ lim
ε→0+

f(ε) = f(0).

Similarly, we find that f is monotone increasing on (−∞, 0]. We now show that f is monotone
increasing on R. Let x and y be real numbers with x > y. We want to show that f(x) ≥ f(y).
In case 0 6∈ (x, y), we get the result by the hypothesis. In case x ≥ 0 ≥ y, it follows that
f(x) ≥ f(0) ≥ f(y).

Theorem 4.2.1. (Power Mean inequality for three variables ) Let a, b, and c be positive
real numbers. We define a function M(a,b,c) : R −→ R by

M(a,b,c)(0) = 3
√
abc , M(a,b,c)(r) =

(
ar + br + cr

3

) 1
r

(r 6= 0).

Then, M(a,b,c) is a monotone increasing continuous function.

First Proof. Write M(r) = M(a,b,c)(r). We first establish that M is continuous. Since M is contin-
uous at r for all r 6= 0, it’s enough to show that

lim
r→0

M(r) = 3
√
abc.

Let f(x) = ln
(
ax+bx+cx

3

)
, where x ∈ R. Since f(0) = 0, the lemma 2 implies that

lim
r→0

f(r)
r

= lim
r→0

f(r)− f(0)
r − 0

= f ′(0) = ln 3
√
abc .

Since ex is a continuous function, this means that

lim
r→0

M(r) = lim
r→0

e
f(r)
r = eln

3√
abc = 3

√
abc.

Now, we show that M is monotone increasing. By the lemma 3, it will be enough to establish that
M is monotone increasing on (0,∞) and monotone increasing on (−∞, 0). We first show that M
is monotone increasing on (0,∞). Let x ≥ y > 0. We want to show that

(
ax + bx + cx

3

) 1
x

≥
(
ay + by + cy

3

) 1
y

.
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After the substitution u = ay, v = ay, w = az, it becomes

(
u
x
y + v

x
y + w

x
y

3

) 1
x

≥
(
u+ v + w

3

) 1
y

.

Since it is homogeneous, we may normalize to u+ v + w = 3. We are now required to show that

G(u) +G(v) +G(w)
3

≥ 1,

where G(t) = t
x
y , where t > 0. Since x

y ≥ 1, we find that G is convex. Jensen’s inequality shows
that

G(u) +G(v) +G(w)
3

≥ G
(
u+ v + w

3

)
= G(1) = 1.

Similarly, we may deduce that M is monotone increasing on (−∞, 0).

We’ve learned that the convexity of f(x) = xλ (λ ≥ 1) implies the monotonicity of the power
means. Now, we shall show that the convexity of x lnx also implies the power mean inequality.

Second Proof of the Monotonicity. Write f(x) = M(a,b,c)(x). We use the increasing function the-
orem. By the lemma 3, it’s enough to show that f ′(x) ≥ 0 for all x 6= 0. Let x ∈ R − {0}. We
compute

f ′(x)
f(x)

=
d

dx
(ln f(x)) = − 1

x2
ln
(
ax + bx + cx

3

)
+

1
x

1
3 (ax ln a+ bx ln b+ cx ln c)

1
3(ax + bx + cx)

or
x2f ′(x)
f(x)

= − ln
(
ax + bx + cx

3

)
+
ax ln ax + bx ln bx + cx ln cx

ax + bx + cx
.

To establish f ′(x) ≥ 0, we now need to establish that

ax ln ax + bx ln bx + cx ln cx ≥ (ax + bx + cx) ln
(
ax + bx + cx

3

)
.

Let us introduce a function f : (0,∞) −→ R by f(t) = t ln t, where t > 0. After the substitution
p = ax, q = ay, r = az, it becomes

f(p) + f(q) + f(r) ≥ 3f
(
p+ q + r

3

)
.

Since f is convex on (0,∞), it follows immediately from Jensen’s inequality.

As a corollary, we obtain the RMS-AM-GM-HM inequality for three variables.

Corollary 4.2.1. For all positive real numbers a, b, and c, we have
√
a2 + b2 + c2

3
≥ a+ b+ c

3
≥ 3
√
abc ≥ 3

1
a + 1

b + 1
c

.

Proof. The Power Mean inequality states that M(a,b,c)(2) ≥M(a,b,c)(1) ≥M(a,b,c)(0) ≥M(a,b,c)(−1).

Using the convexity of x lnx or the convexity of xλ (λ ≥ 1), we can also establish the mono-
tonicity of the power means for n positive real numbers.
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Theorem 4.2.2. (Power Mean inequality) Let x1, · · · , xn > 0. The power mean of order r is
defined by

M(x1,··· ,xn)(0) = n
√
x1 · · ·xn , M(x1,··· ,xn)(r) =

(
xr1 + · · ·+ xn

r

n

) 1
r

(r 6= 0).

Then, M(x1,··· ,xn) : R −→ R is continuous and monotone increasing.

We conclude that

Corollary 4.2.2. (Geometric Mean as a Limit) Let x1, · · · , xn > 0. Then,

n
√
x1 · · ·xn = lim

r→0

(
x1
r + · · ·+ xn

r

n

) 1
r

.

Theorem 4.2.3. (RMS-AM-GM-HM inequality) For all x1, · · · , xn > 0, we have
√
x1

2 + · · ·+ xn2

n
≥ x1 + · · ·+ xn

n
≥ n
√
x1 · · ·xn ≥ n

1
x1

+ · · ·+ 1
xn

.
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4.3 Majorization Inequality

We say that a vector x = (x1, · · · , xn) majorizes another vector y = (y1, · · · , yn) if

(1) x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn,
(2) x1 + · · ·+ xk ≥ y1 + · · ·+ yk for all 1 ≤ k ≤ n− 1,
(3) x1 + · · ·+ xn = y1 + · · ·+ yn.

Theorem 4.3.1. (Majorization Inequality) Let f : [a, b] −→ R be a convex function. Suppose
that (x1, · · · , xn) majorizes (y1, · · · , yn), where x1, · · · , xn, y1, · · · , yn ∈ [a, b]. Then, we obtain

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn).

For example, we can minimize cosA + cosB + cosC, where ABC is an acute triangle. Recall
that − cosx is convex on

(
0, π2

)
. Since

(
π
2 ,

π
2 , 0
)

majorize (A,B,C), the majorization inequality
implies that

cosA+ cosB + cosC ≥ cos
(π

2

)
+ cos

(π
2

)
+ cos 0 = 1.

Also, in a triangle ABC, the convexity of tan 2
(
x
4

)
on [0, π] and the majorization inequality show

that

21−12
√

3 = 3 tan 2
( π

12

)
≤ tan 2

(
A

4

)
+tan 2

(
B

4

)
+tan 2

(
C

4

)
≤ tan 2

(π
4

)
+tan 20+tan 20 = 1.

(IMO 1999/2) Let n be an integer with n ≥ 2.

Determine the least constant C such that the inequality

∑

1≤i<j≤n
xixj(x2

i + x2
j ) ≤ C


 ∑

1≤i≤n
xi




4

holds for all real numbers x1, · · · , xn ≥ 0.

Second Solution. (Kin Y. Li1) As in the first solution, after normalizing x1 + · · · + xn = 1, we
maximize ∑

1≤i<j≤n
xixj(x2

i + x2
j ) =

n∑

i=1

f(xi),

where f(x) = x3 − x4 is a convex function on [0, 1
2 ]. Since the inequality is symmetric, we can

restrict our attention to the case x1 ≥ x2 ≥ · · · ≥ xn. If 1
2 ≥ x1, then we see that

(
1
2 ,

1
2 , 0, · · · 0

)
majorizes (x1, · · · , xn). Hence, the convexity of f on [0, 1

2 ] and the Majorization inequality show
that

n∑

i=1

f(xi) ≤ f
(

1
2

)
+ f

(
1
2

)
+ f(0) + · · ·+ f(0) =

1
8
.

We now consider the case when 1
2 ≥ x1. Write x1 = 1

2 − ε for some ε ∈ [0, 1
2

]
. We find that

(1− x1, 0, · · · 0) majorizes (x2, · · · , xn). By the Majorization inequality, we find that

n∑

i=2

f(xi) ≤ f (1− x1) + f(0) + · · ·+ f(0) = f (1− x1)

1I slightly modified his solution in [KYL].
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so that
n∑

i=1

f(xi) ≤ f(x1)+f (1− x1) = x1(1−x1)[x1
2+(1−x1)2] =

(
1
4
− ε2

)(
1
2

+ 2ε2
)

= 2
(

1
16
− ε4

)
≤ 1

8
.
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4.4 Supporting Line Inequality

There is a simple way to find new bounds for given differentiable functions. We begin to show that
every supporting lines are tangent lines in the following sense.

Proposition 4.4.1. (Characterization of Supporting Lines) Let f be a real valued function.
Let m,n ∈ R. Suppose that

(1) f(α) = mα+ n for some α ∈ R,
(2) f(x) ≥ mx+ n for all x in some interval (ε1, ε2) including α, and
(3) f is differentiable at α.

Then, the supporting line y = mx+ n of f is the tangent line of f at x = α.

Proof. Let us define a function F : (ε1, ε2) −→ R by F (x) = f(x) − mx − n for all x ∈ (ε1, ε2).
Then, F is differentiable at α and we obtain F ′(α) = f ′(α) −m. By the assumption (1) and (2),
we see that F has a local minimum at α. So, the first derivative theorem for local extreme values
implies that 0 = F ′(α) = f ′(α)−m so that m = f ′(α) and that n = f(α)−mα = f(α)− f ′(α)α.
It follows that y = mx+ n = f ′(α)(x− α) + f(α).

(Nesbitt, 1903) For all positive real numbers a, b, c, we have

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Proof 13. We may normalize to a + b + c = 1. Note that 0 < a, b, c < 1. The problem is now to
prove ∑

cyclic

f(a) ≥ 3
2
⇔ f(a) + f(b) + f(c)

3
≥ f

(
1
3

)
, where f(x) =

x

1− x.

The equation of the tangent line of f at x = 1
3 is given by y = 9x−1

4 . We claim that f(x) ≥ 9x−1
4

for all x ∈ (0, 1). It follows from the identity

f(x)− 9x− 1
4

=
(3x− 1)2

4(1− x)
.

Now, we conclude that
∑

cyclic

a

1− a ≥
∑

cyclic

9a− 1
4

=
9
4

∑

cyclic

a− 3
4

=
3
2
.

The above argument can be generalized. If a function f has a supporting line at some point on
the graph of f , then f satisfies Jensen’s inequality in the following sense.

Theorem 4.4.1. (Supporting Line Inequality) Let f : [a, b] −→ R be a function. Suppose that
α ∈ [a, b] and m ∈ R satisfy

f(x) ≥ m(x− α) + f(α)

for all x ∈ [a, b]. Let ω1, · · · , ωn > 0 with ω1 + · · ·+ ωn = 1. Then, the following inequality holds

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(α)

for all x1, · · · , xn ∈ [a, b] such that α = ω1x1 + · · ·+ ωnxn. In particular, we obtain

f(x1) + · · ·+ f(xn)
n

≥ f
( s
n

)
,

where x1, · · · , xn ∈ [a, b] with x1 + · · ·+ xn = s for some s ∈ [na, nb].
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Proof. It follows that ω1f(x1)+ · · ·+ωnf(xn) ≥ ω1[m(x1−α)+f(α)]+ · · ·+ω1[m(xn−α)+f(α)] =
f(α).

We can apply the supporting line inequality to deduce Jensen’s inequality for differentiable
functions.

Lemma 4.4.1. Let f : (a, b) −→ R be a convex function which is differentiable twice on (a, b). Let
y = lα(x) be the tangent line at α ∈ (a, b). Then, f(x) ≥ lα(x) for all x ∈ (a, b).

Proof. Let α ∈ (a, b). We want to show that the tangent line y = lα(x) = f ′(α)(x − α) + f(α) is
the supporting line of f at x = α such that f(x) ≥ lα(x) for all x ∈ (a, b). However, by Taylor’s
theorem, we can find a θx between α and x such that

f(x) = f(α) + f ′(α)(x− α) +
f ′′(θx)

2
(x− α)2 ≥ f(α) + f ′(α)(x− α).

(Weighted Jensen’s inequality) Let f : [a, b] −→ R be a continuous convex function
which is differentiable twice on (a, b). Let ω1, · · · , ωn > 0 with ω1 + · · · + ωn = 1. For
all x1, · · · , xn ∈ [a, b],

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn).

Third Proof. By the continuity of f , we may assume that x1, · · · , xn ∈ (a, b). Now, let µ =
ω1 x1 + · · · + ωn xn. Then, µ ∈ (a, b). By the above lemma, f has the tangent line y = lµ(x) =
f ′(µ)(x − µ) + f(µ) at x = µ satisfying f(x) ≥ lµ(x) for all x ∈ (a, b). Hence, the supporting line
inequality shows that

ω1f(x1) + · · ·+ ωnf(xn) ≥ ω1f(µ) + · · ·+ ωnf(µ) = f(µ) = f(ω1 x1 + · · ·+ ωn xn).

We note that the cosine function is concave on
[
0, π2

]
and convex on

[
π
2 , π

]
. Non-convex functions

can be locally convex and have supporting lines at some points. This means that the supporting line
inequality is a powerful tool because we can also produce Jensen-type inequalities for non-convex
functions.

(Theorem 6) In any triangle ABC, we have cosA+ cosB + cosC ≤ 3
2 .

Third Proof. Let f(x) = − cosx. Our goal is to establish a three-variables inequality

f(A) + f(B) + f(C)
3

≥ f
(π

3

)
,

where A,B,C ∈ (0, π) with A + B + C = π. We compute f ′(x) = sinx. The equation of the
tangent line of f at x = π

3 is given by y =
√

3
2

(
x− π

3

)− 1
2 . To apply the supporting line inequality,

we need to show that

− cosx ≥
√

3
2

(
x− π

3

)
− 1

2
for all x ∈ (0, π). This is a one-variable inequality! We omit the proof.
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Problem 33. (Japan 1997) Let a, b, and c be positive real numbers. Prove that

(b+ c− a)2

(b+ c)2 + a2
+

(c+ a− b)2

(c+ a)2 + b2
+

(a+ b− c)2

(a+ b)2 + c2
≥ 3

5
.

Proof. Because of the homogeneity of the inequality, we may normalize to a + b + c = 1. It takes
the form

(1− 2a)2

(1− a)2 + a2
+

(1− 2b)2

(1− b)2 + b2
+

(1− 2c)2

(1− c)2 + c2
≥ 3

5
⇔ 1

2a2 − 2a+ 1
+

1
2b2 − 2b+ 1

+
1

2c2 − 2c+ 1
≤ 27

5
.

We find that the equation of the tangent line of f(x) = 1
2x2−2x+1

at x = 1
3 is given by y = 54

25x+ 27
25

and that

f(x)−
(

54
25
x+

27
25

)
= −2(3x− 1)2(6x+ 1)

25(2x2 − 2x+ 1)
≤ 0.

for all x > 0. It follows that ∑

cyclic

f(a) ≤
∑

cyclic

54
25
a+

27
25

=
27
5
.
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Chapter 5

Problems, Problems, Problems

Each problem that I solved became a rule, which served afterwards to solve other problems. Rene Descartes

5.1 Multivariable Inequalities

M 1. (IMO short-list 2003) Let (x1, x2, · · · , xn) and (y1, y2, · · · , yn) be two sequences of positive
real numbers. Suppose that (z1, z2, · · · , zn) is a sequence of positive real numbers such that

zi+j
2 ≥ xiyj

for all 1 ≤ i, j ≤ n. Let M = max{z2, · · · , z2n}. Prove that

(
M + z2 + · · ·+ z2n

2n

)2

≥
(
x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)
.

M 2. (Bosnia and Herzegovina 2002) Let a1, · · · , an, b1, · · · , bn, c1, · · · , cn be positive real num-
bers. Prove the following inequality :

(
n∑

i=1

ai
3

)(
n∑

i=1

bi
3

)(
n∑

i=1

ci
3

)
≥
(

n∑

i=1

aibici

)3

.

M 3. (C12113, Marcin E. Kuczma) Prove that inequality

n∑

i=1

ai

n∑

i=1

bi ≥
n∑

i=1

(ai + bi)
n∑

i=1

aibi
ai + bi

for any positive real numbers a1, · · · , an, b1, · · · , bn
M 4. (Yogoslavia 1998) Let n > 1 be a positive integer and a1, · · · , an, b1, · · · , bn be positive real
numbers. Prove the following inequality.


∑

i6=j
aibj




2

≥
∑

i 6=j
aiaj

∑

i 6=j
bibj .

1CRUX with MAYHEM
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M 5. (C2176, Sefket Arslanagic) Prove that

((a1 + b1) · · · (an + bn))
1
n ≥ (a1 · · · an)

1
n + (b1 · · · bn)

1
n

where a1, · · · , an, b1, · · · , bn > 0

M 6. (Korea 2001) Let x1, · · · , xn and y1, · · · , yn be real numbers satisfying

x1
2 + · · ·+ xn

2 = y1
2 + · · ·+ yn

2 = 1

Show that

2

∣∣∣∣∣1−
n∑

i=1

xiyi

∣∣∣∣∣ ≥ (x1y2 − x2y1)2

and determine when equality holds.

M 7. (Singapore 2001) Let a1, · · · , an, b1, · · · , bn be real numbers between 1001 and 2002 inclusive.
Suppose that

n∑

i=1

ai
2 =

n∑

i=1

bi
2.

Prove that
n∑

i=1

ai
3

bi
≤ 17

10

n∑

i=1

ai
2.

Determine when equality holds.

M 8. (Abel’s inequality) Let a1, · · · , aN , x1, · · · , xN be real numbers with xn ≥ xn+1 > 0 for all
n. Show that

|a1x1 + · · ·+ aNxN | ≤ Ax1

where
A = max{|a1|, |a1 + a2|, · · · , |a1 + · · ·+ aN |}.

M 9. (China 1992) For every integer n ≥ 2 find the smallest positive number λ = λ(n) such that
if

0 ≤ a1, · · · , an ≤ 1
2
, b1, · · · , bn > 0, a1 + · · ·+ an = b1 + · · ·+ bn = 1

then
b1 · · · bn ≤ λ(a1b1 + · · ·+ anbn).

M 10. (C2551, Panos E. Tsaoussoglou) Suppose that a1, · · · , an are positive real numbers. Let
ej,k = n− 1 if j = k and ej,k = n− 2 otherwise. Let dj,k = 0 if j = k and dj,k = 1 otherwise. Prove
that

n∑

j=1

n∏

k=1

ej,kak
2 ≥

n∏

j=1

(
n∑

k=1

dj,kak

)2

M 11. (C2627, Walther Janous) Let x1, · · · , xn(n ≥ 2) be positive real numbers and let x1 +
· · ·+ xn. Let a1, · · · , an be non-negative real numbers. Determine the optimum constant C(n) such
that

n∑

j=1

aj(sn − xj)
xj

≥ C(n)




n∏

j=1

aj




1
n

.
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M 12. (Hungary-Israel Binational Mathematical Competition 2000) Suppose that k and
l are two given positive integers and aij(1 ≤ i ≤ k, 1 ≤ j ≤ l) are given positive numbers. Prove
that if q ≥ p > 0, then




l∑

j=1

(
k∑

i=1

aij
p

) q
p




1
q

≤




k∑

i=1




l∑

j=1

aij
q




p
q




1
p

.

M 13. (Kantorovich inequality) Suppose x1 < · · · < xn are given positive numbers. Let
λ1, · · · , λn ≥ 0 and λ1 + · · ·+ λn = 1. Prove that

(
n∑

i=1

λixi

)(
n∑

i=1

λi
xi

)
≤ A2

G2
,

where A = x1+xn
2 and G =

√
x1xn.

M 14. (Czech-Slovak-Polish Match 2001) Let n ≥ 2 be an integer. Show that

(a1
3 + 1)(a2

3 + 1) · · · (an3 + 1) ≥ (a1
2a2 + 1)(a2

2a3 + 1) · · · (an2a1 + 1)

for all nonnegative reals a1, · · · , an.

M 15. (C1868, De-jun Zhao) Let n ≥ 3, a1 > a2 > · · · > an > 0, and p > q > 0. Show that

a1
pa2

q + a2
pa3

q + · · ·+ an−1
pan

q + an
pa1

q ≥ a1
qa2

p + a2
qa3

p + · · ·+ an−1
qan

p + an
qa1

p

M 16. (Baltic Way 1996) For which positive real numbers a, b does the inequality

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 ≥ x1
ax2

bx3
a + x2

ax3
bx4

a + · · ·+ xn
ax1

bx2
a

holds for all integers n > 2 and positive real numbers x1, · · · , xn.

M 17. (IMO short List 2000) Let x1, x2, · · · , xn be arbitrary real numbers. Prove the inequality

x1

1 + x1
2

+
x2

1 + x1
2 + x2

2
+ · · ·+ xn

1 + x1
2 + · · ·+ xn2

<
√
n.

M 18. (MM21479, Donald E. Knuth) Let Mn be the maximum value of the quantity

xn
(1 + x1 + · · ·+ xn)2

+
x2

(1 + x2 + · · ·+ xn)2
+ · · ·+ x1

(1 + xn)2

over all nonnegative real numbers (x1, · · · , xn). At what point(s) does the maximum occur ? Express
Mn in terms of Mn−1, and find limn→∞Mn.

M 19. (IMO 1971) Prove the following assertion is true for n = 3 and n = 5 and false for every
other natural number n > 2 : if a1, · · · , an are arbitrary real numbers, then

n∑

i=1

∏

i6=j
(ai − aj) ≥ 0.

2Mathematics Magazine
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M 20. (IMO 2003) Let x1 ≤ x2 ≤ · · · ≤ xn be real numbers.
(a) Prove that 

 ∑

1≤i,j≤n
|xi − xj |




2

≤ 2(n2 − 1)
3

∑

1≤i,j≤n
(xi − xj)2.

(b) Show that the equality holds if and only if x1, x2, · · · , xn is an arithmetic sequence.

M 21. (Bulgaria 1995) Let n ≥ 2 and 0 ≤ x1, · · · , xn ≤ 1. Show that

(x1 + x2 + · · ·+ xn)− (x1x2 + x2x3 + · · ·+ xnx1) ≤
[n

2

]
,

and determine when there is equality.

M 22. (MM1407, M. S. Klamkin) Determine the maximum value of the sum

x1
p + x2

p + · · ·+ xn
p − x1

qx2
r − x2

qx3
r − · · ·xnqx1

r,

where p, q, r are given numbers with p ≥ q ≥ r ≥ 0 and 0 ≤ xi ≤ 1 for all i.

M 23. (IMO Short List 1998) Let a1, a2, · · · , an be positive real numbers such that

a1 + a2 + · · ·+ an < 1.

Prove that
a1a2 · · · an(1− (a1 + a2 + · · ·+ an))

(a1 + a2 + · · ·+ an)(1− a1)(1− a2) · · · (1− an)
≤ 1
nn+1

.

M 24. (IMO Short List 1998) Let r1, r2, · · · , rn be real numbers greater than or equal to 1.
Prove that

1
r1 + 1

+ · · ·+ 1
rn + 1

≥ n

(r1 · · · rn)
1
n + 1

.

M 25. (Baltic Way 1991) Prove that, for any real numbers a1, · · · , an,

∑

1≤i,j≤n

aiaj
i+ j − 1

≥ 0.

M 26. (India 1995) Let x1, x2, · · · , xn be positive real numbers whose sum is 1. Prove that

x1

1− x1
+ · · ·+ xn

1− xn ≥
√

n

n− 1
.

M 27. (Turkey 1997) Given an integer n ≥ 2, Find the minimal value of

x1
5

x2 + x3 + · · ·+ xn
+

x2
5

x3 + · · ·+ xn + x1
+ · · · xn

5

x1 + x3 + · · ·+ xn−1

for positive real numbers x1, · · · , xn subject to the condition x1
2 + · · ·+ xn

2 = 1.

M 28. (China 1996) Suppose n ∈ N, x0 = 0, x1, · · · , xn > 0, and x1 + · · ·+ xn = 1. Prove that

1 ≤
n∑

i=1

xi√
1 + x0 + · · ·+ xi−1

√
xi + · · ·+ xn

<
π

2
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M 29. (Vietnam 1998) Let x1, · · · , xn be positive real numbers satisfying

1
x1 + 1998

+ · · ·+ 1
xn + 1998

=
1

1998
.

Prove that
(x1 · · ·xn)

1
n

n− 1
≥ 1998

M 30. (C2768 Mohammed Aassila) Let x1, · · · , xn be n positive real numbers. Prove that

x1√
x1x2 + x2

2
+

x2√
x2x3 + x3

2
+ · · ·+ xn√

xnx1 + x1
2
≥ n√

2

M 31. (C2842, George Tsintsifas) Let x1, · · · , xn be positive real numbers. Prove that

(a)
x1
n + · · ·+ xn

n

nx1 · · ·xn +
n(x1 · · ·xn)

1
n

x1 + · · ·+ xn
≥ 2,

(b)
x1
n + · · ·+ xn

n

x1 · · ·xn +
(x1 · · ·xn)

1
n

x1 + · · ·+ xn
≥ 1.

M 32. (C2423, Walther Janous) Let x1, · · · , xn(n ≥ 2) be positive real numbers such that
x1 + · · ·+ xn = 1. Prove that

(
1 +

1
x1

)
· · ·
(

1 +
1
xn

)
≥
(
n− x1

1− x1

)
· · ·
(
n− xn
1− xn

)

Determine the cases of equality.

M 33. (C1851, Walther Janous) Let x1, · · · , xn(n ≥ 2) be positive real numbers such that

x1
2 + · · ·+ xn

2 = 1.

Prove that
2
√
n− 1

5
√
n− 1

≤
n∑

i=1

2 + xi
5 + xi

≤ 2
√
n+ 1

5
√
n+ 1

.

M 34. (C1429, D. S. Mitirinovic, J. E. Pecaric) Show that

n∑

i=1

xi
xi2 + xi+1xi+2

≤ n− 1

where x1, · · · , xn are n ≥ 3 positive real numbers. Of course, xn+1 = x1, xn+2 = x2. 3

M 35. (Belarus 1998 S. Sobolevski) Let a1 ≤ a2 ≤ · · · ≤ an be positive real numbers. Prove
the inequalities

(a)
n

1
a1

+ · · ·+ 1
an

≥ a1

an
· a1 + · · ·+ an

n
,

(b)
n

1
a1

+ · · ·+ 1
an

≥ 2k
1 + k2

· a1 + · · ·+ an
n

,

where k = an
a1

.

3Original version is to show that sup
Pn
i=1

xi
xi2+xi+1xi+2

= n− 1.
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M 36. (Hong Kong 2000) Let a1 ≤ a2 ≤ · · · ≤ an be n real numbers such that

a1 + a2 + · · ·+ an = 0.

Show that
a1

2 + a2
2 + · · ·+ an

2 + na1an ≤ 0.

M 37. (Poland 2001) Let n ≥ 2 be an integer. Show that

n∑

i=1

xi
i +
(
n

2

)
≥

n∑

i=1

ixi

for all nonnegative reals x1, · · · , xn.

M 38. (Korea 1997) Let a1, · · · , an be positive numbers, and define

A =
a1 + · · ·+ an

n
,G = (a1 · · ·n)

1
n ,H =

n
1
a1

+ · · ·+ 1
an

(a) If n is even, show that
A

H
≤ −1 + 2

(
A

G

)n
.

(b) If n is odd, show that
A

H
≤ −n− 2

n
+

2(n− 1)
n

(
A

G

)n
.

M 39. (Romania 1996) Let x1, · · · , xn, xn+1 be positive reals such that

xn+1 = x1 + · · ·+ xn.

Prove that
n∑

i=1

√
xi(xn+1 − xi) ≤

√
xn+1(xn+1 − xi)

M 40. (C2730, Peter Y. Woo) Let AM(x1, · · · , xn) and GM(x1, · · · , xn) denote the arithmetic
mean and the geometric mean of the positive real numbers x1, · · · , xn respectively. Given positive
real numbers a1, · · · , an, b1, · · · , bn, (a) prove that

GM(a1 + b1, · · · , an + bn) ≥ GM(a1, · · · , an) +GM(b1, · · · , bn).

For each real number t ≥ 0, define

f(t) = GM(t+ b1, t+ b2, · · · , t+ bn)− t

(b) Prove that f is a monotonic increasing function, and that

lim
t→∞ f(t) = AM(b1, · · · , bn)

M 41. (C1578, O. Johnson, C. S. Goodlad) For each fixed positive real number an, maximize

a1a2 · · · an
(1 + a1)(a1 + a2)(a2 + a3) · · · (an−1 + an)

over all positive real numbers a1, · · · , an−1.
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M 42. (C1630, Isao Ashiba) Maximize

a1a2 + a3a4 + · · ·+ a2n−1a2n

over all permutations a1, · · · , a2n of the set {1, 2, · · · , 2n}
M 43. (C1662, M. S. Klamkin) Prove that

x1
2r+1

s− x1
+
x2

2r+1

s− x2
+ · · · xn

2r+1

s− xn ≥
4r

(n− 1)n2r−1
(x1x2 + x2x3 + · · ·+ xnx1)r

where n > 3, r ≥ 1
2 , xi ≥ 0 for all i, and s = x1 + · · · + xn. Also, Find some values of n and r

such that the inequality is sharp.

M 44. (C1674, M. S. Klamkin) Given positive real numbers r, s and an integer n > r
s , find

positive real numbers x1, · · · , xn so as to minimize
(

1
x1
r

+
1
x2
r

+ · · ·+ 1
xnr

)
(1 + x1)s(1 + x2)s · · · (1 + xn)s.

M 45. (C1691, Walther Janous) Let n ≥ 2. Determine the best upper bound of

x1

x2x3 · · ·xn + 1
+

x2

x1x3 · · ·xn + 1
+ · · ·+ xn

x1x2 · · ·xn−1 + 1

over all x1, · · · , xn ∈ [0, 1].

M 46. (C1892, Marcin E. Kuczma) Let n ≥ 4 be an integer. Find the exact upper and lower
bounds for the cyclic sum

n∑

i=1

xi
xi−1 + xi + xi+1

over all n-tuples of nonnegative numbers x1, · · · , xn such that xi−1 + xi + xi+1 > 0 for all i. Of
course, xn+1 = x1, x0 = xn. Characterize all cases in which either one of these bounds is attained.

M 47. (C1953, M. S. Klamkin) Determine a necessary and sucient condition on real constants
r1, · · · , rn such that

x1
2 + x2

2 + ·+ xn
2 ≥ (r1x1 + r2x2 + · · ·+ rnxn)2

holds for all real numbers x1, · · · , xn.

M 48. (C2018, Marcin E. Kuczma) How many permutations (x1, · · · , xn) of {1, 2, · · · , n} are
there such that the cyclic sum

|x1 − x2|+ |x2 − x3|+ · · ·+ |xn−1 − xn|+ |xn − x1|

is (a) a minimum, (b) a maximum ?

M 49. (C2214, Walther Janous) Let n ≥ 2 be a natural number. Show that there exists a
constant C = C(n) such that for all x1, · · · , xn ≥ 0 we have

n∑

i=1

√
xi ≤

√√√√
n∏

i=1

(xi + C)

Determine the minimum C(n) for some values of n. (For example, C(2) = 1.)
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M 50. (C2615, M. S. Klamkin) Suppose that x1, · · · , xn are non-negative numbers such that

∑
xi

2
∑

(xixi+1)2 =
n(n+ 1)

2

where e the sums here and subsequently are symmetric over the subscripts {1, · · · , n}. (a) Determine

the maximum of
∑
xi. (b) Prove or disprove that the minimum of

∑
xi is

√
n(n+1)

2 .

M 51. (Turkey 1996) Given real numbers 0 = x1 < x2 < · · · < x2n, x2n+1 = 1 with xi+1− xi ≤ h
for 1 ≤ i ≤ n, show that

1− h
2

<
n∑

i=1

x2i(x2i+1 − x2i−1) <
1 + h

2
.

M 52. (Poland 2002) Prove that for every integer n ≥ 3 and every sequence of positive numbers
x1, · · · , xn at least one of the two inequalities is satsified :

n∑

i=1

xi
xi+1 + xi+2

≥ n

2
,

n∑

i=1

xi
xi−1 + xi−2

≥ n

2
.

Here, xn+1 = x1, xn+2 = x2, x0 = xn, x−1 = xn−1.

M 53. (China 1997) Let x1, · · · , x1997 be real numbers satisfying the following conditions:

− 1√
3
≤ x1, · · · , x1997 ≤

√
3, x1 + · · ·+ x1997 = −318

√
3

Determine the maximum value of x1
12 + · · ·+ x1997

12.

M 54. (C2673, George Baloglou) Let n > 1 be an integer. (a) Show that

(1 + a1 · · · an)n ≥ a1 · · · an(1 + a1
n−2) · · · (1 + a1

n−2)

for all a1, · · · , an ∈ [1,∞) if and only if n ≥ 4.
(b) Show that

1
a1(1 + a2

n−2)
+

1
a2(1 + a3

n−2)
+ · · ·+ 1

an(1 + a1
n−2)

≥ n

1 + a1 · · · an
for all a1, · · · , an > 0 if and only if n ≤ 3.

(c) Show that

1
a1(1 + a1

n−2)
+

1
a2(1 + a2

n−2)
+ · · ·+ 1

an(1 + ann−2)
≥ n

1 + a1 · · · an
for all a1, · · · , an > 0 if and only if n ≤ 8.

M 55. (C2557, Gord Sinnamon,Hans Heinig) (a) Show that for all positive sequences {xi}

n∑

k=1

k∑

j=1

j∑

i=1

xi ≤ 2
n∑

k=1




k∑

j=1

xj




2

1
xk
.

(b) Does the above inequality remain true without the factor 2? (c) What is the minimum constant
c that can replace the factor 2 in the above inequality?
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M 56. (C1472, Walther Janous) For each integer n ≥ 2, Find the largest constant Cn such that

Cn

n∑

i=1

|ai| ≤
∑

1≤i<j≤n
|ai − aj |

for all real numbers a1, · · · , an satisfying
∑n

i=1 ai = 0.

M 57. (China 2002) Given c ∈ (1
2 , 1
)
. Find the smallest constant M such that, for any integer

n ≥ 2 and real numbers 1 < a1 ≤ a2 ≤ · · · ≤ an, if

1
n

n∑

k=1

kak ≤ c
n∑

k=1

ak,

then
n∑

k=1

ak ≤M
m∑

k=1

kak,

where m is the largest integer not greater than cn.

M 58. (Serbia 1998) Let x1, x2, · · · , xn be positive numbers such that

x1 + x2 + · · ·+ xn = 1.

Prove the inequality
ax1−x2

x1 + x2
+

ax2−x3

x2 + x3
+ · · · a

xn−x1

xn + x1
≥ n2

2
,

holds true for every positive real number a. Determine also when the equality holds.

M 59. (MM1488, Heinz-Jurgen Seiffert) Let n be a positive integer. Show that if 0 < x1 ≤
x2 ≤ xn, then

n∏

i=1

(1 + xi)




n∑

j=0

j∏

k=1

1
xk


 ≥ 2n(n+ 1)

with equality if and only if x1 = · · · = xn = 1.

M 60. (Leningrad Mathematical Olympiads 1968) Let a1, a2, · · · , ap be real numbers. Let
M = maxS and m = minS. Show that

(p− 1)(M −m) ≤
∑

1≤i,j≤n
|ai − aj | ≤ p2

4
(M −m)

M 61. (Leningrad Mathematical Olympiads 1973) Establish the following inequality

8∑

i=0

2i cos
( π

2i+2

)(
1− cos

( π

2i+2

))
<

1
2
.

M 62. (Leningrad Mathematical Olympiads 2000) Show that, for all 0 < x1 ≤ x2 ≤ . . . ≤ xn,

x1x2

x3
+
x2x3

x4
+ · · ·+ xn1x1

x2
+
xnx1

x2
≥

n∑

i=1

xi

M 63. (Mongolia 1996) Show that, for all 0 < a1 ≤ a2 ≤ . . . ≤ an,
(
a1 + a2

2

)(
a2 + a3

2

)
· · ·
(
an + a1

2

)
≤
(
a1 + a2 + a3

3

)(
a2 + a3 + a4

3

)
· · ·
(
an + a1 + a2

3

)
.

74



5.2 Problems for Putnam Seminar

P 1. Putnam 04A6 Suppose that f(x, y) is a continuous real-valued function on the unit square
0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Show that

∫ 1

0

(∫ 1

0
f(x, y)dx

)2

dy +
∫ 1

0

(∫ 1

0
f(x, y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f(x, y)dx dy

)2

+
∫ 1

0

∫ 1

0
(f(x, y))2 dx dy.

P 2. Putnam 04B2 Let m and n be positive integers. Show that

(m+ n)!
(m+ n)m+n

<
m!
mm

n!
nn
.

P 3. Putnam 03A2 Let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative real numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ [(a1 + b1)(a2 + b2) · · · (an + bn)]1/n.

P 4. Putnam 03A3 Find the minimum value of

| sinx+ cosx+ tanx+ cotx+ secx+ cscx|
for real numbers x.

P 5. Putnam 03A4 Suppose that a, b, c, A,B,C are real numbers, a 6= 0 and A 6= 0, such that

|ax2 + bx+ c| ≤ |Ax2 +Bx+ C|
for all real numbers x. Show that

|b2 − 4ac| ≤ |B2 − 4AC|.

P 6. Putnam 03B6 Let f(x) be a continuous real-valued function defined on the interval [0, 1].
Show that ∫ 1

0

∫ 1

0
|f(x) + f(y)| dx dy ≥

∫ 1

0
|f(x)| dx.

P 7. Putnam 02B3 Show that, for all integers n > 1,

1
2ne

<
1
e
−
(

1− 1
n

)n
<

1
ne
.

P 8. Putnam 01A6 Can an arc of a parabola inside a circle of radius 1 have a length greater
than 4?

P 9. Putnam 99A5 Prove that there is a constant C such that, if p(x) is a polynomial of degree
1999, then

|p(0)| ≤ C
∫ 1

−1
|p(x)| dx.

P 10. Putnam 99B4 Let f be a real function with a continuous third derivative such that
f(x), f ′(x), f ′′(x), f ′′′(x) are positive for all x. Suppose that f ′′′(x) ≤ f(x) for all x. Show that
f ′(x) < 2f(x) for all x.
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P 11. Putnam 98B4 Let am,n denote the coefficient of xn in the expansion of (1 + x + x2)m.
Prove that for all integers k ≥ 0,

0 ≤
b 2k

3
c∑

i=0

(−1)iak−i,i ≤ 1.

P 12. Putnam 98B1 Find the minimum value of

(
x+ 1

x

)6 − (x6 + 1
x6

)− 2
(
x+ 1

x

)3 +
(
x3 + 1

x3

)

for x > 0.

P 13. Putnam 96B2 Show that for every positive integer n,

(
2n− 1
e

) 2n−1
2

< 1 · 3 · 5 · · · (2n− 1) <
(

2n+ 1
e

) 2n+1
2

.

P 14. Putnam 96B3 Given that {x1, x2, . . . , xn} = {1, 2, . . . , n}, find, with proof, the largest
possible value, as a function of n (with n ≥ 2), of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.

P 15. Putnam 91B6 Let a and b be positive numbers. Find the largest number c, in terms of a
and b, such that

axb1−x ≤ asinhux
sinhu

+ b
sinhu(1− x)

sinhu
for all u with 0 < |u| ≤ c and for all x, 0 < x < 1.

P 16. (CMJ4416, Joanne Harris) For what real values of c is

ex + e−x

2
≤ ecx2

.

for all real x?

P 17. (CMJ420, Edward T. H. Wang) It is known [Daniel I. A. Cohen, Basic Techniques of
Combinatorial Theory, p.56] and easy to show that 2n <

(
2n
n

)
< 22n for all integers n > 1. Prove

that the stronger inequalities
22n−1

√
n

<

(
2n
n

)
<

22n

√
n

hold for all n ≥ 4.

P 18. (CMJ379, Mohammad K. Azarian) Let x be any real number. Prove that

(1− cosx)

∣∣∣∣∣
n∑

k=1

sin(kx)

∣∣∣∣∣

∣∣∣∣∣
n∑

k=1

cos(kx)

∣∣∣∣∣ ≤ 2.
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P 19. (CMJ392 Robert Jones) Prove that
(

1 +
1
x2

)(
x sin

1
x

)
> 1 for x ≥ 1√

5
.

P 20. (CMJ431 R. S. Luthar) Let 0 < φ < θ < π
2 . Prove that

[(1 + tan2 φ)(1 + sin2 φ)]csc2 φ < [(1 + tan2 θ)(1 + sin2 θ)]csc2 θ.

P 21. (CMJ451, Mohammad K. Azarian) Prove that

πsec2 α cos2 α+ πcsc2 α sin2 α ≥ π2,

provided 0 < α < π
2 .

P 22. (CMJ446, Norman Schaumberger) If x, y, and z are the radian measures of the angles
in a (non-degenerate) triangle, prove that

π sin
3
π
≥ x sin

1
x

+ y sin
1
y

+ z sin
1
z
.

P 23. (CMJ461, Alex Necochea) Let 0 < x < π
2 and 0 < y < 1. Prove that

x− arcsin y ≤
√

1− y2 − cosx
y

,

with equality holding if and only if y = sinx.

P 24. (CMJ485 Norman Schaumberger) Prove that
(1) if a ≥ b > 1 or 1 > a ≥ b > 0, then ab

b
ba
a ≥ ababab; and

(2) if a > 1 > b > 0, then ab
b
ba
a ≤ ababab.

P 25. (CMJ524 Norman Schaumberger) Let a, b, and c be positive real numbers. Show that

aabbcc ≥
(
a+ b

2

)a(b+ c

2

)b(c+ a

2

)c
≥ bacbac.

P 26. (CMJ567 H.-J. Seiffert) Show that for all ditinct positive real numbers x and y,

(√
x+
√
y

2

)2

<
x− y

2 sinh x−y
x+y

<
x+ y

2
.

P 27. (CMJ572, George Baloglou and Robert Underwood) Prove or disprove that for
θ ∈ (−π

4 ,
π
4

)
, cosh θ ≤ 1√

1−tan2 θ
.

P 28. (CMJ603, Juan-Bosco Romero Marquez) Let a and b be distinct positive real numbers
and let n be a positive integer. Prove that

a+ b

2
≤ n

√
bn+1 − an+1

(n+ 1)(b− a)
≤ n

√
an + bn

2
.
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P 29. (MM5904, Norman Schaumberger) For x > 2, prove that

ln
(

x

x− 1

)
≤
∞∑

j=0

1
x2j
≤ ln

(
x− 1
x− 2

)
.

P 30. (MM1590, Constantin P. Niculescu) For given a, 0 < a < π
2 , determine the minimum

value of α ≥ 0 and the maximum value of β ≥ 0 for which
(x
a

)α
≤ sinx

sin a
≤
(x
a

)β
.

(This generalize the well-known inequality due to Jordan, which asserts that 2x
π ≤ sinx ≤ 1 on

[0, π2 ].)

P 31. (MM1597, Constantin P. Niculescu) For every x, y ∈ (0,√π
2

)
with x 6= y, prove that

(
ln

1− sinxy
1 + sinxy

)2

≥ ln
1− sinx2

1 + sinx2
ln

1− sin y2

1 + sin y2
.

P 32. (MM1599, Ice B. Risteski) Given α > β > 0 and f(x) = xα(1 − x)β. If 0 < a < b < 1
and f(a) = f(b), show that f ′(α) < −f ′(β).

P 33. (MM Q197, Norman Schaumberger) Prove that if b > a > 0, then
(
a
b

)a ≥ ea

eb
≥ (ab

)b.
P 34. (MM1618, Michael Golomb) Prove that 0 < x < π,

x
π − x
π + x

< sinx <
(

3− x

π

)
x
π − x
π + x

.

P 35. (MM1634, Constantin P. Niculescu) Find the smallest constant k > 0 such that

ab

a+ b+ 2c
+

bc

b+ c+ 2a
+

ca

c+ a+ 2b
≤ k(a+ b+ c)

for every a, b, c > 0.

P 36. (MM1233, Robert E. Shafer) Prove that if x > −1 and x 6= 0, then

x2

1 + x+ x2

2 −
x4

120

1+x+ 31
252

x2

< [ln(1 + x)]2 <
x2

1 + x+ x2

2 −
x4

240

1+x+ 1
20
x2

.

P 37. (MM1236, Mihaly Bencze) Let the functions f and g be defined by

f(x) =
π2x

2π2 + 8x2
and g(x) =

8x
4π2 + πx2

for all real x. Prove that if A, B, and C are the angles of an acuted-angle triangle, and R is its
circumradius then

f(A) + f(B) + f(C) <
a+ b+ c

4R
< g(A) + g(B) + g(C).

P 38. (MM1245, Fouad Nakhli) For each number x in open interval (1, e) it is easy to show
that there is a unique number y in (e,∞) such that ln y

y = lnx
x . For such an x and y, show that

x+ y > x ln y + y lnx.

P 39. (MM Q725, S. Kung) Show that (sinx)y ≤ sin(xy), where 0 < x < π and 0 < y < 1.

P 40. (MM Q771, Norman Schaumberger) Show that if 0 < θ < π
2 , then sin 2θ ≥ (tan θ)cos 2θ.
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