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Introduction

Inequalities are useful in all fields of Mathematics. The aim of this problem-oriented book is to
present elementary techniques in the theory of inequalities. The readers will meet classical theorems
including Schur’s inequality, Muirhead’s theorem, the Cauchy-Schwarz inequality, the Power Mean
inequality, the AM-GM inequality, and Hélder’s theorem. 1 would greatly appreciate hearing about
comments and corrections from my readers. You can send email to me at ultrametric@gmail.com

To Students

My target readers are challenging high schools students and undergraduate students. The given
techniques in this book are just the tip of the inequalities iceberg. Young students should find their
own methods to attack various problems. A great Hungarian Mathematician Paul Erdos was fond
of saying that God has a transfinite book with all the theorems and their best proofs. 1 strongly
encourage readers to send me their own creative solutions of the problems in this book. Have fun!
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Chapter 1

Geometric Inequalities

It gives me the same pleasure when someone else proves a good theorem as when I do it myself. E. Landau

1.1 Ravi Substitution

Many inequalities are simplified by some suitable substitutions. We begin with a classical inequality
in triangle geometry. What is the first’ nontrivial geometric inequality ? In 1746, Chapple showed
that

Theorem 1.1.1. (Chapple 1746, Euler 1765) Let R and r denote the radii of the circumcircle
and incircle of the triangle ABC. Then, we have R > 2r and the equality holds if and only if ABC
1s equilateral.

Proof. Let BC=a,CA=0b, AB=c¢,s= %b“ and S = [ABC].? Recall the well-known identities

2 S = Z—IE, S =rs, 8% =s(s—a)(s—b)(s—c). Hence, R > 2r is equivalent to %? > 25 or abe > 8%2

or abc > 8(s —a)(s — b)(s — ¢). We need to prove the following. O
Theorem 1.1.2. ([AP], A. Padoa) Let a, b, ¢ be the lengths of a triangle. Then, we have

abc > 8(s —a)(s—b)(s—c¢) or abc> (b+c—a)(c+a—">b)(a+b—c)
and the equality holds if and only if a = b= c.

Proof. We use the Ravi Substitution : Since a, b, ¢ are the lengths of a triangle, there are positive
reals x, y, z such that a = y+ 2, b = z4+ 2, ¢ = v +y. (Why?) Then, the inequality is
(y+ 2)(z + z)(z + y) > 8xyz for z, y, z > 0. However, we get

(y+2)(z+a)(@z+y) —8zyz =2(y — 2)* + y(z — 2)* + 2(z — y)* > 0.

Exercise 1. Let ABC be a right triangle. Show that
R>(1+V2)r

When does the equality hold ¢

!The first geometric inequality is the Triangle Inequality : AB 4+ BC > AC
?In this book, [P] stands for the area of the polygon P.



It’s natural to ask that the inequality in the theorem 2 holds for arbitrary positive reals a, b,
¢? Yes ! It’s possible to prove the inequality without the additional condition that a, b, ¢ are the
lengths of a triangle :

Theorem 1.1.3. Let x, y, z > 0. Then, we have zyz > (y+z —x)(z+x —y)(x +y — 2). The
equality holds if and only if x =y = 2.

Proof. Since the inequality is symmetric in the variables, without loss of generality, we may assume
that x > y > z. Then, we have x +y > z and z +x > y. If y + 2 > «, then z, y, z are the lengths
of the sides of a triangle. In this case, by the theorem 2, we get the result. Now, we may assume
that y + 2z <. Then, zyz > 0> (y+z—2)(2 + 2z —y)(z +y — 2). O

The inequality in the theorem 2 holds when some of z, y, z are zeros :
Theorem 1.1.4. Let z, y, 2 > 0. Then, we have xyz > (y+ 2z —z)(z +x —y)(zr +y — 2).
Proof. Since z,y,z > 0, we can find positive sequences {xy}, {yn}, {zn} for which
lim z, =2, lim y, =y, lim z, = 2.
n—oo n—oo n—oo
Applying the theorem 2 yields
TnYnzn > (Un + 2n — 20) (20 + T — Yn) (T + Yn — 2n)-

Now, taking the limits to both sides, we get the result.
O

Clearly, the equality holds when z = y = z. However, xyz = (y+z—z)(z +z —y)(z +y — 2)
and x, y, z > 0 does not guarantee that x = y = z. In fact, for z,y,z > 0, the equality
xyz=(y+z—x)(z+x—y)(z+y— z) is equivalent to

r=y=zor x=y,z2=0o0r y=z,2=0 or z=z,y=0.
It’s straightforward to verify the equality
wyz—(y+z—z)ztaz—y)@t+y—2) =x@—y)(z—2) +yly—2)(y—z)+2(z2 —2)(z —y).
Hence, the theorem 4 is a particular case of Schur’s inequality.

Problem 1. (IMO 2000/2, Proposed by Titu Andreescu) Let a,b, ¢ be positive numbers such

that abc = 1. Prove that
<a—1+1) (b—l—i-l) (c—l—i-l) <1.
b c a

First Solution. Since abc = 1, we make the substitution a = %, b=Y c=2forz,y, 2> 0.2 We
rewrite the given inequality in the terms of z, y, 2 :

x z x\ (%
(—1—1—) (g—1+—> (——1+y>§1 S ayz> (y+z—xz)(z+z—y)(lx+y—2).
y y) \z z/) \z x

3For example, take z =1, y = %7 z= ﬁ.



The Ravi Substitution is useful for inequalities for the lengths a, b, ¢ of a triangle. After the
Ravi Substitution, we can remove the condition that they are the lengths of the sides of a triangle.

Problem 2. (IMO 1983/6) Let a, b, ¢ be the lengths of the sides of a triangle. Prove that
a’bla — b) +b%c(b—¢) + 2a(c — a) > 0.
First Solution. After setting a =y+ 2, b=2+x, c=x+y for z,y,z > 0, it becomes
2 2 2

23z + e+ 2y > 22yz + ay’z + xy2® or ——i—yf—i-fza?-i-y%-z,
y z

which follows from the Cauchy-Schwarz inequality

2 2 2
T z

(y+ 2z +x) <+y+> > (z+y+2)>
Y z x

Exercise 2. Let a, b, ¢ be the lengths of a triangle. Show that

a b c
+ + <
b+c c+a a+bd

2.

Exercise 3. (Darij Grinberg) Let a, b, ¢ be the lengths of a triangle. Show the inequalities
a® + 0% + 3 + 3abe — 2b%a — 2¢%b — 2a%¢ > 0,

and
3a%b + 3b%c + 3c%a — 3abe — 2b%a — 2¢%b — 2a%c > 0.

We now discuss Weitzenbock’s inequality and related inequalities.

Problem 3. (IMO 1961/2, Weitzenbock’s inequality) Let a, b, ¢ be the lengths of a triangle
with area S. Show that
a’? + b + 2 > 4/38.

Solution. Writea=y+ 2, b=z2+z, c=x+y for z,y,z > 0. It’s equivalent to
(y+2)%+ (z+2)° + (x+9)*)* > 48(z + y + 2)zyz,
which can be obtained as following :
(y+ 2+ (z+2)* + (x +9)*)* > 16(yz + 2z + 2y)> > 16 - 3(zy - yz + yz - 20 + 2y - y2).
Here, we used the well-known inequalities p? + ¢® > 2pq and (p + ¢ + )2 > 3(pq + qr + 7p). O

Theorem 1.1.5. (Hadwiger-Finsler inequality) For any triangle ABC with sides a, b, ¢ and
area I, the following inequality holds.

2ab + 2bc + 2ca — (a® + b + ?) > 4V/3F.

First Proof. After the substitution a =y + 2, b=2+ =z, c = x + y, where z,y, z > 0, it becomes

zy 4 yz + 2z > /3ryz(z +y + 2),

which follows from the identity

(o = y2)* + (g2 = 20)* + (22 — ay)?.

(zy +yz + 22)* — 3wyz(z +y+ 2) = 5



Second Proof. We give a convexity proof. There are many ways to deduce the following identity:

2ab + 2bc + 2ca — (a? + b% + c?)
4F

tan 2 L tan 2 4 tan O
= tan — an — an —.
oy Thaly Aty

™

Since tan x is convex on (O, 5), Jensen’s inequality shows that

(2 2 2 A, B, C
2ab+2bc+2aiF (a® +b° + ¢%) > 3tan (2“‘;‘*‘2) — /3.

O]

Tsintsifas proved a simultaneous generalization of Weitzenbock’s inequality and Nesbitt’s in-
equality.

Theorem 1.1.6. (Tsintsifas) Let p,q,r be positive real numbers and let a,b,c denote the sides of
a triangle with area F. Then, we have

P a’ + g b + ! 0222\/§F.
q+r r+p +4q

Proof. (V. Pambuccian) By Hadwiger-Finsler inequality, it suffices to show that

1
i a’ + a v+ ! 2>

“(a+b+0e)° —(a®+ b +c2)
q+r r+p pP+q 2
or )
(p+q+r> o2+ <p+q+7“> B2 4 <p+q+7“> 2> Latbtop
q+r r+p P+q 2
or . .
+7)+(r+p)+(p+ a® + b* + c2>> a+b+c).
() 04+ @+ 0) (e P ) 2 (@b
However, this is a straightforward consequence of the Cauchy-Schwarz inequality. O

Theorem 1.1.7. (Neuberg-Pedoe inequality) Let a1,bi,c1 denote the sides of the triangle
A1B1C1 with area Fy. Let as,bo, co denote the sides of the triangle A3 BoCs with area Fy. Then,
we have

a12(b22 + 022 — a22) + b12(622 + a22 — 622) + 612((122 + 522 — 022) > 161 Fy.

Notice that it’s a generalization of Weitzenbock’s inequality.(Why?) In [GC], G. Chang proved
Neuberg-Pedoe inequality by using complex numbers. For very interesting geometric observations
and proofs of Neuberg-Pedoe inequality, see [DP] or [GI, pp.92-93]. Here, we offer three algebraic
proofs.

Lemma 1.1.1.
a1?(ag® 4 bo? — 2?) + b2 (be? + c2% — az?) + c1%(ca® + ag? — be?) > 0.
Proof. Observe that it’s equivalent to
(a1 + 1% 4 c1?)(a2® 4+ bo® + c2?) > 2(ar%az® + b1%bo® + c1%co?).

From Heron’s formula, we find that, for i = 1, 2,

16}711'2 = (aiz + bi2 + CZ'2)2 — 2(044 + bi4 + Ci4) >0 or a,-2 + biz + CZ'2 > \/2((%4 + bi4 + Ci4) .

4



The Cauchy-Schwarz inequality implies that

(a12+612+012)(a22+b22+022) > 2\/(&14 + 514 + 614)(6124 + 524 + 624) > 2(a12a22+b12622+012022).

O
First Proof. ([LC1], Carlitz) By the lemma, we obtain
L= a12(622 + 022 — a22) + b12(022 + a22 — b22) + 612(a22 + 522 — 022) > 0,
Hence, we need to show that
L* — (16F1?)(16F»%) > 0.
One may easily check the following identity
L? — (16 F1?)(16Fy?) = —4(UV + VW + WU),
where
U= b12622 - b22612, V= 012a22 - 022a12 and W = a12622 - a22612.
Using the identity
2 b 2
WU +b2V +e?W =0 or W=-"p_ 2Ly,
C1 C1
one may also deduce that
2 2 _ g2 b2 2 Aai?bi2 — (12 — a2 — by2)2
UV v s wu = -9 (p o emmas mhe ) et s (en s by
612 2&12 4a12012
It follows that
2 2 2 2\ 2 2
ai 1’ —a’ —b 16 F; 9
ov+vw+wlo=-— (U —-—————+V | ———=V*<0.
+ + c12 ( 2a12 ) 4a12¢12° —
O

Carlitz also observed that the Neuberg-Pedoe inequality can be deduced from Aczél’s inequality.

Theorem 1.1.8. (Aczél’s inequality) Let aj, -+ ,an,by,- - , by, be positive real numbers satisfying
a? > a® + - +a,? and b? > b + -+ b2

Then, the following inequality holds.

aiby — (agbs + - - - + apby) > \/((112 — (@22 + -+ a?) (0% — (b2 + -+ +b,?))

Proof. ([AI]) The Cauchy-Schwarz inequality shows that

arby > \/(a22 ot an?)(ba® 4 -+ bp®) > agby + -+ + anby.
Then, the above inequality is equivalent to

(a1by — (agby + -+ + anbp))? > (a1 = (a2 + -+ a,?)) (0% — (b2 + -+ b,7)) .



In case a2 — (ag?+---+a,?) = 0, it’s trivial. Hence, we now assume that a2 — (a?+- - -+a,?) > 0.
The main trick is to think of the following quadratic polynomial

P(ac) = (alx—bl)Q—Z(aix—bl-)Q = <a12 — Z ai2> $2+2 (albl — Zaﬂ%) T+ (bl2 — Z bf) .
=2 1=2

=2 =2

2
Since P(g—ll) =—>",la %) — bi) < 0 and since the coefficient of 22 in the quadratic polyno-

mial P is positive, P should have at least one real root. Therefore, P has nonnegative discriminant.
It follows that
n 2 n n
(2 <a161 - Zazbz>> —4 <a12 — ZCLZQ) (blz — Z bi2> > 0.
i=2 i=2 i=2

Second Proof of Neuberg-Pedoe inequality. ([LC2], Carlitz) We rewrite it in terms of a1, b1, c1, ag, b2, ca:

O]

(a12 + 512 + 012)(a22 + 622 + 022) — 2((112@22 + b12b22 + 612022)

> \/<(a12 +b%+ 012)2 —2(at + byt + 014)) ((a22 + bo% + 022)2 — 2(agt + by* + 024)).
We employ the following substitutions
r1=a? + b2+t e =vV2a1? 13 = V2b2, 14 = V2067,
y1 = a2’ +b” + 2% y2 = V2a2®,ys = V2bo? s = V2 &%

As in the proof of the lemma 5, we have
212 > 10% + y3® 4+ 242 and 112 > o + y32 + ya’

We now apply Aczél’s inequality to get the inequality

Ty — w2 — T3ys — Tays > /(212 — (222 + y3® + 42)) (1% — (y2° + y3 + wa?)).
O
We close this section with a very simple proof by a former student in KMO* summer program.
Third Proof. Toss two triangles AA;B;C; and AAyB>Cy on R:

A1(0,p1), Bi(p2,0), C1(p3,0), A2(0,q1), B2(ge,0), and C2(gs,0).
It therefore follows from the inequality z? + 3? > 2|zy| that

a12(bo? + c2% — ao?) + b1 (ca? + an® — bo?) + 1% (a0? + by? — ¢o?)

(p3 — p2)*(201° + 2q1q2) + (p1® + p3°) (202° — 2q243) + (p1° + p2?)(245° — 24243)
2(ps — p2)°q1® + 2(q3 — 42)°p1” + 2(p3q2 — p2a3)°

2((ps — p2)@)” +2((g3 — q2)m)?

4|(p3 — p2)a1| - [(g3 — q2)p1|

161 Fy .

AV

4Korean Mathematical Olympiads



1.2 Trigonometric Methods

In this section, we employ trigonometric methods to attack geometric inequalities.

Theorem 1.2.1. (Erdés-Mordell Theorem) If from a point P inside a given triangle ABC
perpendiculars PHy, PHo, PHs are drawn to its sides, then PA+PB+PC > 2(PH1+PHs+PH3).

This was conjectured by Paul Erdos in 1935, and first proved by Mordell in the same year.
Several proofs of this inequality have been given, using Ptolemy’s theorem by André Avez, angular
computations with similar triangles by Leon Bankoff, area inequality by V. Komornik, or using
trigonometry by Mordell and Barrow.

Proof. ([MB], Mordell) We transform it to a trigonometric inequality. Let hy = PHy, ho = PH>
and hg = PHs3. Apply the Since Law and the Cosine Law to obtain

PAsinA=HyHy = \/ho® + hs? — 2hshs cos(m — A),

PBsinB = HsH|, = \/h32 + h12 — 2hzhy COS(T[‘ — B),

PCsinC =H Hy, = \/m? + hy? — 2hyhy cos(m — C).

So, we need to prove that

1
Zl. sin A \/h22 + hg® = 2hahg cos(m — A) > 2(hy + ha + ha).
cyclic

The main trouble is that the left hand side has too heavy terms with square root expressions. Our
strategy is to find a lower bound without square roots. To this end, we express the terms inside
the square root as the sum of two squares.

H2H32 = h22 + h32 — 2hghsg cos(m — A)
= h22 + h32 — 2hsohsg COS(B + C)
ha? 4 h3? — 2hah3(cos B cos C — sin Bsin C).

Using cos? B + sin? B = 1 and cos? C + sin? C' = 1, one finds that
H2H32 = (hosin C' + hgsin B)2 + (hg cosC' — hg cos B)2 .

Since (hg cos C' — hg cos B)2 is clearly nonnegative, we get HoHs > hosinC' + hzsin B. It follows
that

\/h22 + h3? — 2hghs cos(m — A)

Z . Z Z h2 Sin C+ h3 Sin B
. sin A - sin A
cyclic cyclic
B Z sin B . sin C' b
N < \sinC  sinB !
cyclic
sinB sinC
>

- © = 1
sinC sin B

cyclic

= 2hq + 2hg + 2h3.



We use the same techniques to attack the following geometric inequality.

Problem 4. (IMO Short-list 2005) In an acute triangle ABC, let D, E, F, P, Q, R be the feet
of perpendiculars from A, B, C, A, B, C to BC, CA, AB, EF, FD, DE, respectively. Prove that

p(ABC)p(PQR) > p(DEF)*,
where p(T) denotes the perimeter of triangle T .

Solution. Let’s euler® this problem. Let p be the circumradius of the triangle ABC. It’s easy
to show that BC' = 2psin A and FF = 2psin Acos A. Since DQ = 2psinCcos Bcos A, DR =
2psin BecosC cos A, and ZFDE =7 — 2A, the Cosine Law gives us

QR? = DQ?+ DR?—-2DQ - DRcos(m — 24A)
= 4p?cos’ A [(sin C cos B)? + (sin B cos C)? + 2sin C cos B sin B cos C cos(2A)

or
QR =2pcos AN/ f(A, B,C),

where
f(A,B,C) = (sinC cos B)* + (sin B cos C)? + 2sin C cos B sin B cos C cos(24).

So, what we need to attack is the following inequality:

2

Z 2psin A Z 2pcos AN/ f(A,B,C) | > Z 2psin A cos A

cyclic cyclic cyclic

or
2

Z sin A Z cos A/ f(A,B,C) | > Z sin A cos A

cyclic cyclic cyclic

Our job is now to find a reasonable lower bound of \/f(A, B, ). Once again, we express f(A, B,C)
as the sum of two squares. We observe that

f(A,B,C) = (sinCcosB)? + (sin BcosC)* + 2sin C cos Bsin B cos C cos(2A)
= (sinC cos B + sin B cos C)? + 2sin C cos Bsin B cos C [—1 4 cos(24)]
= sin?(C + B) — 2sin C cos Bsin Bceos C - 2sin® A
sin? A[1 — 4sin Bsin C cos B cos C] .

So, we shall express 1 — 4 sin Bsin C' cos B cos C' as the sum of two squares. The trick is to replace
1 with (sin2 B + cos? B) (sin2 C + cos? C). Indeed, we get

1—4sinBsinCcos BcosC = (sin2 B + cos? B) (sin2 C + cos? C’) — 4sin B sin C cos B cos C
= (sinBcosC —sinC cos B)? + (cos B cos C' — sin Bsin C)?
= sin?*(B — C) +cos*(B+C)
= sin?(B — C) + cos® A,

Seuler v. (in Mathematics) transform the problems in triangle geometry to trigonometric ones



It therefore follows that
f(A, B,C) = sin® A [sin®(B — C) + cos® A] > sin® Acos® 4

so that

Z cos A/ f(A,B,C) > Z sin A cos? A.

cyclic cyclic
So, we can complete the proof if we establish that

2

ZsinA ZsinAcoszA > ZsinAcosA

cyclic cyclic cyclic

Indeed, one sees that it’s a direct consequence of the Cauchy-Schwarz inequality

(p+g+r)@+y+2) > (Vpz + Vay + Vrz),
where p, q,r, x,y and z are positive real numbers. ]

Alternatively, one may obtain another lower bound of f(A, B,C):

f(A,B,C) = (sinCcosB)?+ (sin Bcos C)? + 2sin C cos Bsin B cos C cos(2A)
= (sinC cos B —sin B cos C)? + 2sin C cos Bsin B cos C [1 + cos(24)]
sin(2B) sin(2C)
2 2
> cos® Asin(2B)sin(20).

= sin?(B—C)+2 -2cos’ A

Then, we can use this to offer a lower bound of the perimeter of triangle PQR:

P(PQR) = > 2pcos A\/f(A,B,C) > > 2pcos® AVsin2Bsin 2C

cyclic cyclic

So, one may consider the following inequality:

p(ABC) Z 2p cos? AV/sin2Bsin2C' > p(DEF)?

cyclic
or
2
2p Z sin A Z 2pcos® AVsin2Bsin2C | > | 2p Z sin A cos A
cyclic cyclic cyclic
or

2

Z sin A Z cos? Av/sin2Bsin2C | > Z sin A cos A

cyclic cyclic cyclic
However, it turned out that this doesn’t hold. Try to disprove this!
Problem 5. Let I be the incenter of the triangle ABC with BC' =a, CA=0b and AB = c¢. Prove

that, for all points X,
aXA? +bX B? + ¢XC? > abe.



Proof. This geometric inequality follows from the following geometric identity:
aXA? +bXB?* +cXC?* = (a+ b+ c)XI* + abe. ©

There are many ways to establish this identity. To euler this, we toss the picture on the cartesian
plane so that A(ccos B, csin B), B(0,0) and C(a,0). Letting r be the inradius of ABC and s =
atbte  we get I(s — b,r). It’s well-known that

2
2 (s—a)ls—b)s—c)

rT =
S

Set X (p,q). On the one hand, we obtain

aXA® +bXB* + cXC?
= a [(p — CCOSB)2 + (g — csinB)2] +b (p2 + q2) +c [(p — a)2 + q2]
= (a+b+c)p? —2acp(l 4+ cos B) + (a + b+ ¢)¢? — 2acqsin B + ac® + a’c
a? + c? — b? [AABC]

> + 25q2 —2acq——— + ac® + a®c
2ac zac

= 2sp® —pla+c+b)(a+c—0b)+2s¢* — 4q[ANABC] + ac® + a’c
= 2sp? — p(25) (25 — 2b) + 25¢* — 4qsr + ac® + a*c
= 2sp? —4s(s —b)p + 2s5¢° — drsq + ac® + da’c.

= 2sp2 — 2acp (1 +

On the other hand, we obtain

(a+b+c)XI* + abe
= 2s[(p—(s =)+ (a—1)7]
= 2s[p* —2(s—b)p+ (s —b)*+¢* — 2qr +r?]
= 2sp? —4s(s—b)p+ 2s(s — b)? + 25¢> — 4rsq + 251> + abe.

It follows that

aXA? +bXB? +¢cXC? — (a+b+c)XI* — abe.
= ac® +a*c—2s(s — b)* — 2sr* — abe
= acla+c) —2s(s —b)? —2(s —a)(s — b)(s — ¢) — abc
= acla+c—0b) —2s(s—b)*—2(s—a)(s —b)(s —c)
= 2ac(s —b) —2s(s —b)2 —2(s —a)(s — b)(s — ¢)
= 2(s—b)lac—s(s—b) —2(s —a)(s—c)].

However, we compute ac — s(s —b) — 2(s —a)(s —¢) = 25> + (a + b+ c)s = 0. O

Problem 6. (IMO 2001/1) Let ABC be an acute-angled triangle with O as its circumcenter.
Let P on line BC be the foot of the altitude from A. Assume that /BCA > /ZABC + 30°. Prove
that ZCAB + ZCOP < 90°.

Proof. The angle inequality Z/CAB 4+ ZCOP < 90° can be written as ZCOP < Z/PCQO. This can
be shown if we establish the length inequality OP > PC'. Since the power of P with respect to the
circumcircle of ABC is OP? = R? — BP - PC, where R is the circumradius of the triangle ABC,

SIMO Short-list 1988
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it becomes R?> — BP - PC > PC? or R?> > BC - PC. We euler this. It’s an easy job to get BC =
2Rsin A and PC = 2Rsin BcosC. Hence, we show the inequality R? > 2Rsin A - 2R sin B cos C
or sin Asin BcosC < %. Since sin A < 1, it suffices to show that sin Asin B cos C' < %. Finally, we
use the angle condition ZC' > ZB + 30° to obtain the trigonometric inequality

sin(B + C) —sin(C' — B) < 1 —sin(C — B) < 1—sin30° 1

in B = —.
sin B cos C' 7 < 5 < 7 1

O

We close this section with Barrows’ inequality stronger than FErdos-Mordell Theorem. We need
the following trigonometric inequality:

Proposition 1.2.1. Let x,y, 2,01, 02,03 be real numbers with 01 + 62 + 03 = w. Then,
2% + 9% + 2% > 2(yz cos Oy + zx cos By + x3 cos b3).
Proof. Using 03 = m — (61 + 62), it’s an easy job to check the following identity
2%+ 92 + 2% —2(yz cos 01 4 zx cos Oy + 2y cos 03) = (2 — (xcos By + ycos0))? + (xsin by — ysin6;)? .
O

Corollary 1.2.1. Let p, q, and v be positive real numbers. Let 61, 02, and 03 be real numbers
satisfying 01 + 02 + 03 = 7. Then, the following inequality holds.

1
pcos01+qc086’2+rcos<93§<qr+rp+pq>'
2\p q¢ 7

Proof. Take (z,y,2) = (, /%, \ /%, \/ %) and apply the above proposition. O

Theorem 1.2.2. (Barrow’s Inequality) Let P be an interior point of a triangle ABC and let
U, V, W be the points where the bisectors of angles BPC, CPA, APB cut the sides BC,CA,AB
respectively. Prove that PA+ PB + PC > 2(PU + PV + PW).

P’FOOf. ([MB] and [AK]) Let dl = PA, dg = PB, d3 = PC, ll = PU, l2 = PV, l3 = PW,
201 = /BPC, 205 = ZCPA, and 205 = ZAPB. We need to show that dy +ds+ds > 2(l1 + 12 +13).

It’s easy to deduce the following identities

2dads cos b, | 2dsd cosfy, and 2ddy
= y = 5 11 ==
dy+dy 0P dyvd T A+ dy

By the AM-GM inequality and the above corollary, this means that

Iy

cos 03,

1
l1 + 1o + 13 < \/dads cos 01 + \/dsdy cos Oy + \/dydy cos O3 < 3 (dy +do + ds) .
]

As another application of the above trigonometric proposition, we establish the following in-
equality

Corollary 1.2.2. ([AK], Abi-Khuzam) Let x1,--- ,x4 be positive real numbers. Let 61,--- 04
be real numbers such that 601 + --- + 04 = w. Then,

(2122 + x324) (2123 + T274) (2124 + T223)
L1234 '

10801 + xo cos by + x3cosf3 + x4 cosby < \/

11



Proof. Let p = z®4wo? 4 g’ tws’ q= “’1“32'5:”3:“4 and \ = \/%. In the view of 01 + 62+ (03 +604) =7

2x12T2 2x3T4

and 03 + 04 + (61 + 62) = 7, the proposition implies that
x1 cos by + zg cos by + Acos(f3 + 04) < pA = \/pq,

and
x3cosbs + x4 cos b0y + Acos(01 + 02) < % = /1q.

Since cos(f3 + 04) + cos(01 + 02) = 0, adding these two above inequalities yields

)(z123 + Tox4)(T174 + T273)
T1X2T3T4 .

1 co8 6 + x9cosby + x3co803 + x4c0804 < 2,/pg = \/(le2 + T3%4

12



1.3 Applications of Complex Numbers

In this section, we discuss some applications of complex numbers to geometric inequality. Every
complex number corresponds to a unique point in the complex plane. The standard symbol for the
set of all complex numbers is C, and we also refer to the complex plane as C. The main tool is
applications of the following fundamental inequality.

Theorem 1.3.1. If z1,--- ,2, € C, then |z1|+ -+ |zn| > |21+ + 20]-
Proof. Induction on n. O

Theorem 1.3.2. (Ptolemy’s Inequality) For any points A, B,C, D in the plane, we have
AB-CD+ BC-DA > AC - BD.

Proof. Let a, b, c and 0 be complex numbers that correspond to A, B,C, D in the complex plane.
It becomes
la—=b|- ||+ [b—c|-la| = |a—c|-[b].

Applying the Triangle Inequality to the identity (a —b)c+ (b—c)a = (a —c)b, we get the result. [

Problem 7. ([TD]) Let P be an arbitrary point in the plane of a triangle ABC with the centroid
G. Show the following inequalities

(1)370 PB- P70+E PA-PB+CA-PC-PA>BC-CA-AB and

(2) PA* . BC+PB’-CA+PC° - AB > 3PG -BC - CA - AB.

Solution. We only check the first inequality. Regard A, B,C, P as complex numbers and assume
that P corresponds to 0. We're required to prove that

|(B—C)BC|+|(A—B)AB|+ |(C - A)CA| > |(B—-C)(C—-A)(A—- B)|.
It remains to apply the Triangle Inequality to the identity
(B-C)BC+(A—-B)AB+ (C—-A)CA=—-(B—-C)(C—-A)(A-B).
O]

Problem 8. (IMO Short-list 2002) Let ABC' be a triangle for which there exists an interior
point ' such that ZAFB = /BFC = LZCFA. Let the lines BF and CF meet the sides AC and
AB at D and E, respectively. Prove that AB + AC > 4DE.

Solution. Let AF = x,BF = y,CF = z and let w = cos 3 + isin 3 We can toss the pictures
on C so that the points F', A, B, C, D, and FE are represented by the complex numbers 0, z, yw,

2w?, d, and e. It’s an easy exercise to establish that DF = mxzz and EF = 2. This means that
d=—Zwand e= —%w. We’re now required to prove that
—zz x
|z — yw| + |20® — 2| > 4 wt Y2
z+x T+y

2

Since |w| = 1 and w? = 1, we have |2w? — 2| = |w(2w? — x)| = |2z — 2w|. Therefore, we need to prove

|z — yw| + |z — zw| >

dzx 4y
— w| .
24+ x4y

13



Azx _ 4dzy
z+x T+y

where p=z+z,q=y+x, r = jﬁ; and s = %. It’s clear that p > r > 0 and ¢ > s > 0. It
follows that

More strongly, we establish that |(z — yw) + (2 — zw)| > w’ or |p—qw|>|r—swl,

lp — qw\2 —|r— sw[Q =(p—qw)(p—qw) — (r —sw)(r — sw) = (p2 —72) + (pg —1s) + (q2 - 32) > 0.

It’s easy to check that the equality holds if and only if AABC is equilateral. O
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Chapter 2

Four Basic Techniques

Differentiate! Shiing-shen Chern

2.1 Trigonometric Substitutions

If you are faced with an integral that contains square root expressions such as
/\/1—332 dz, /\/1—|—y2 dy, /\/22—1dz

then trigonometric substitutions such as x = sint, y = tant, z = sect are very useful. We will
learn that making a suitable trigonometric substitution simplifies the given inequality.

Problem 9. (APMO 2004/5) Prove that, for all positive real numbers a, b, c,
(a® +2)(b? 4+ 2)(c* 4+ 2) > 9(ab + bc + ca).

First Solution. Choose A,B,C € (O,g) with a = ﬂtanA, b =+2tanB, and ¢ = V2tanC.
Using the well-known trigonometric identity 1 + tan?6 = ﬁ, one may rewrite it as

4
g > cos A cos B cos C (cos Asin Bsin C' + sin A cos Bsin C + sin Asin B cosC) .
One may easily check the following trigonometric identity
cos(A+ B+ C) = cos Acos BcosC — cos Asin Bsin C' — sin A cos B sin C' — sin A sin B cos C.

Then, the above trigonometric inequality takes the form

4
3 > cos Acos BcosC (cos Acos BeosC — cos(A+ B+ C)).

Let 6 = ig“'c. Applying the AM-GM inequality and Jesen’s inequality, we have

A B ’
cos +co; + cos C> < cos? 0,

cos Acos BcosC < <

We now need to show that
> cos® f(cos® 0 — cos 36).

O W~

Using the trigonometric identity

cos30 = 4cos®0 —3cosf or cos®O — cos30 = 3cosh — 3cos? 0,

15



it becomes 4
4 2
77 > cos 9(1—cos 9),

which follows from the AM-GM inequality

1
cos26 cos?6 3 1 [cos?0 cos?6 1
- (1 = cos? <=z 1 — cos? =_.
< 5 5 ( cos 9)) < 3( 5 + 5 —I-( cos 9)) 3

One find that the equality holds if and only if tan A = tan B = tan C' = % if and only if a = b =
c=1. O
Problem 10. (Latvia 2002) Let a, b, ¢, d be the positive real numbers such that

1 1 1 1

=1.
1+a4+1+b4+1+c4+1+d4

Prove that abed > 3.

First Solution. We can write a® = tan A, b> = tan B, ¢? = tanC, d?> = tan D, where A, B,C,D €
(O, g) Then, the algebraic identity becomes the following trigonometric identity :

cos? A+ cos®> B+ cos> C' + cos®> D = 1.
Applying the AM-GM inequality, we obtain
sin? A = 1 — cos? A = cos® B 4 cos®> C +cos> D > 3 (cosBcochosDﬁ .

Similarly, we obtain

1N

,sin? C' > 3(cosDcosAcosB)% , and sin? D > 3 (cos A cos B cos C)

win

sin? B > 3 (cos C cos D cos A)

Multiplying these four inequalities, we get the result! O
Problem 11. (Korea 1998) Let x, y, z be the positive reals with x +y + z = xyz. Show that
1 1 1 3

+ + <.
Vi+a?2 1492 V1+22 7 2

Since the function f is not concave on RT, we cannot apply Jensen’s inequality to the function

ft)= \/ﬁ However, the function f(tan#) is concave on (0,%) !

First Solution. We can write x = tan A, y = tan B, z = tanC, where A, B,C € (O, g) Using the
fact that 1+ tan?6 = ( L )2, we rewrite it in the terms of A, B, C :

cos 6
3
cos A+ cos B +cosC < 3
It follows from tan(m — C) = —z = f_tﬂyy = tan(A + B) and from 7 — C,; A + B € (0,7) that
m—C=A+ Bor A+ B+ C = x. Hence, it suffices to show the following. O

Theorem 2.1.1. In any acute triangle ABC', we have cos A 4+ cos B + cos C' <

[\G][WV]

™

Proof. Since cosx is concave on (O, 5), it’s a direct consequence of Jensen’s inequality. O
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We note that the function cos is not concave on (0, 7). In fact, it’s convex on (Z,7). One may
think that the inequality cos A + cos B 4+ cos C' < % doesn’t hold for any triangles. However, it’s
known that it holds for all triangles.

Theorem 2.1.2. In any triangle ABC, we have cos A + cos B + cos C' < %

First Proof. 1t follows from m —C = A+ B that cos C = — cos(A+ B) = —cos A cos B +sin Asin B
or
3 —2(cos A + cos B + cos C') = (sin A — sin B)? + (cos A 4 cos B — 1) > 0.

O]

Second Proof. Let BC = a, CA =b, AB = c. Use the Cosine Law to rewrite the given inequality
in the terms of a, b, ¢ :
b+ c? — a? +02+a2—b2 +a2+b2—02
2bc 2ca 2ab

3
< —.
-2
Clearing denominators, this becomes
3abe > a(b? + ¢ — a®) + b(c® + a® — b*) + c(a* + b* — ),
which is equivalent to abc > (b+ ¢ —a)(c+ a — b)(a + b — ¢) in the theorem 2. O

In the first chapter, we found that the geometric inequality R > 2r is equivalent to the algebraic
inequality abc > (b+c—a)(c+ a —b)(a+ b —c). We now find that, in the proof of the above
theorem, abc > (b+ ¢ — a)(c+ a —b)(a + b — ¢) is equivalent to the trigonometric inequality
cos A+ cos B+ cosC < % One may ask that

In any triangles ABC), is there a natural relation between cos A 4 cos B 4 cos C' and %,
where R and r are the radii of the circumcircle and incircle of ABC' ?

Theorem 2.1.3. Let R and r denote the radii of the circumcircle and incircle of the triangle ABC.
Then, we have cos A+ cos B +cosC =1+ 4.

Proof. Use the identity a(b? + ¢® — a?) + b(c? + a® — b%) + c(a® + b? — ¢) = 2abc + (b+ ¢ — a)(c +
a—b)(a+b—c). We leave the details for the readers. O

Exercise 4. (a) Let p,q,r be the positive real numbers such that p> + ¢ + 12 + 2pgr = 1. Show
that there exists an acute triangle ABC such that p = cos A, ¢ =cos B, r = cosC.

(b) Let p,q,v > 0 with p> +q¢> +1r2+2pqr = 1. Show that there are A, B,C € [0, g] with p = cos A,
g=cosB,r=cosC, and A+ B+ C = .

Problem 12. (USA 2001) Let a, b, and c be nonnegative real numbers such that a®+b*+c*+abc =
4. Prove that 0 < ab + bc + ca — abe < 2.

Solution. Notice that a,b,c > 1 implies that a® + b*> + ¢ + abc > 4. If a < 1, then we have
ab + bc + ca — abec > (1 — a)bc > 0. We now prove that ab + bc + ca — abc < 2. Letting a = 2p,
b=2q, c=2r, we get p°> + ¢*> + 12 + 2pqr = 1. By the above exercise, we can write

a=2cosA, b=2cosB, c=2cosC for some A, B,C € [0, g] with A4+ B+ C = .
We are required to prove

cos Acos B+ cosBcosC +cosCcosA—2cosAcosBeosC <

N
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One may assume that A > § or 1 —2cos A > 0. Note that

cos A cos B+cos B cos C+cos C cos A—2 cos A cos B cos C' = cos A(cos B+cos C)+cos B cos C(1—2cos A).

We apply Jensen’s inequality to deduce cos B + cosC' < % — cos A. Note that 2cos BcosC =

cos(B — C) + cos(B+ C) <1—cos A. These imply that

1—
COSA) (I —2cosA).

3
cos A(cos B+ cosC) + cos BeosC(1 —2cos A) < cos A <2 - cosA) + <

However, it’s easy to verify that cos A (3 — cos A) + (#) (1—2cosA)=1. O

18



2.2 Algebraic Substitutions

We know that some inequalities in triangle geometry can be treated by the Rawi substitution and
trigonometric substitutions. We can also transform the given inequalities into easier ones through
some clever algebraic substitutions.

Problem 13. (IMO 2001/2) Let a, b, ¢ be positive real numbers. Prove that

a b c
+ + > 1.
Va2 +8bc Vb2 +8ca V2 + 8ab

First Solution. To remove the square roots, we make the following substitution :

a b c

—_— Y ————, = ———,
Va2 + 8be Y Vb2 + 8ca V2 + 8ab

Clearly, z,y,z € (0,1). Our aim is to show that x + y + z > 1. We notice that

a2 B $2 b2 _ y2 CQ B 22 _ 1 B $2 y2 22
8c 1—22" 8ac 1—vy2" 8ab 1— 22 512 \1—22)\1—9y2)\1-22)"

Hence, we need to show that

z+y+2>1, where 0 < z,y,2 < 1and (1 — 2%)(1 — y?)(1 — 2%) = 512(zy2)>.
However, 1 > x + y + z implies that, by the AM-GM inequality,

(1-2*)(1—y*)(1=22) > (z+y+2)*—2°)((z+y+2)*—y°) ((z+y+2)*—2°) = (z+a+y+2)(y+2)

S
[SIE

A(yPax) T 2(zx)? A(Pay) T -2(ay)
= 512(zy2)?. This is a contradiction ! O

N

(w+y+y+2)(z ) (@+y+2+2)(2+y) > Aay2)7-2(y2)

Problem 14. (IMO 1995/2) Let a,b, ¢ be positive numbers such that abc = 1. Prove that

1 n 1 N 1 S 3
ad(b+c) b(c+a) Ala+bd) — 2
. . . . 1 1 1 . .
First Solution. After the substitution a = £, b = g €= 5, we get xyz = 1. The inequality takes
the form
x? y? 22 3
+ + A
y+z z4+x x+y~ 2
It follows from the Cauchy-Schwarz inequality that
2 2 2
[(y+z)+(z+a:)+(a:+y)]< CEERI. S >>(:1:+y+z)2
y+z z+4+x xT+y/)

so that, by the AM-GM inequality,

22 y? 22 Srhytez 3(1‘3/2’)% 3

y+z+z+x+x+y_ 2 - 2 2
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(Korea 1998) Let z, y, z be the positive reals with  + y + z = xyz. Show that

1 1 1 3
+ + <z
Vi+a?  J14+y2 V1+22 7 2

Second Solution. The starting point is letting a = £, b = %, c= % We find that a + b+ ¢ = abc is

€T
equivalent to 1 = xy 4+ yz 4+ zx. The inequality becomes

x Y z 3

+ + <<

Vaz+1  y2+1 V22417 2
or 5

X z
+ Y + <
Vel toytyztzz VR toytyztze 2oy tyztazr T 2
or

x Y z
- -
@+y)e+z) Vy+)ly+ta) VE+a)(z+y)
By the AM-GM inequality, we have

3
< -
-2

T oz (x+y)(x+z)§

(x +y)(z+2) (z+y)(z+2)

laf(z+y)+(@+2)] 1/ = T
2 (z+y)(z+2) _2< + )

In a like manner, we obtain

Y 1 Y Y z 1 z z
<= + and <z {l—+—].
+2)y+a)  2\y+tz y+z (z+2)(z+y) ~2\zt+z  z+y
Adding these three yields the required result. ]
We now prove a classical theorem in various ways.
Theorem 2.2.1. (Nesbitt, 1903) For all positive real numbers a,b,c, we have

a n b n c >3
b+c¢c c+a a+b 2

Proof 1. After the substitution x =b+c, y=c+a, z =a + b, it becomes

cyclic cyclic

which follows from the AM-GM inequality as following:

< |

< |
| 8
SIS
N———
=

I

D

+z z z T T z =z
Y Y =y+++++y26<y--
, x r x Yy Y z z T X
cyclic

Proof 2. We make the substitution

a b c

x:b—i—c’ y:c—i—a’ Z:a—i—b'

It follows that
a t
= —— =1, wh t) = ——.
S @)= Y = where f() = 7

cyclic cyclic
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Since f is concave on (0,00), Jensen’s inequality shows that
1 1 1 rT+y+z 1 rT+y+z
1) =55 X (M57) o r(p) <o (75)

Since f is monotone increasing, this implies that

1 x4+y+=z a 3
B . = > —.
5 < 3 or Zb+c x+y+z_2

cyclic

Proof 3. As in the previous proof, it suffices to show that

, where T:w and Z

T >
- 3

T,
i

1+

N =

cyclic

One can easily check that the condition

T
Zl+$:1

cyclic

becomes 1 = 2xyz + xy + yz + zx. By the AM-GM inequality, we have

1 =2zyz+aytyz+ze <2T343T% = 2T3437T*°-1>0 = (T-1)(T+1)>>0 = T >

N |

(IMO 2000/2) Let a,b,c be positive numbers such that abc = 1. Prove that

red) ) o)

Second Solution. ([IV], Ilan Vardi) Since abc = 1, we may assume that a > 1 > b. ! Tt follows
that

1—<a—1+ll)) (b—1+i> <c—1+i>:<c+i—2> <a+2—1>+(“_1)a(1_b). 2

Third Solution. As in the first solution, after the substitution a = £, b= %, c¢= 2 for z, y, 2 > 0,
we can rewrite it as zyz > (y+ 2z — z)(z + v — y)(z + y — z). Without loss of generality, we can
assume that z >y > x. Set y —x = p and z — x = ¢ with p,q > 0. It’s straightforward to verify
that

O

zyz = (y+2—a)(z+z—y)(z+y—2) =" —pg+ )z + (0° + ¢ — p’a — pg?).
Since p? —pg+¢> > (p—q)?> > 0 and p* + ¢ —p*q¢—pg® = (p—q)*(p+q) > 0, we get the result. O

Fourth Solution. (From the IMO 2000 Short List) Using the condition abc = 1, it’s straight-
forward to verify the equalities

2:1<a—1+1)+c<b—1+1>,
a b c

"Why? Note that the inequality is not symmetric in the three variables. Check it!
For a verification of the identity, see [TV].

21



9 —

<b—1+1>+a<c—1+1>,
c a
1 1
<cl+>+b<a1+).
a c

In particular, they show that at most one of the numbers v = a—1+ %, v=b—1+ %, w=c—1+ %
is negative. If there is such a number, we have

1 1 1
<a—1+> (b—1+> <0—1+> =uww < 0<1.
b c a

And if u,v,w > 0, the AM-GM inequality yields

1 c 1 a 1 b
2=—u+cv>2/-uv, 2=-v+aw > 2,/ -vw, 2=-w+aw > 24/ -wu.
a a b b c c

Thus, uv < 2, vw < g, wu < ¢, SO (uvw)? < 2. 3 -7 = 1. Since u,v,w > 0, this completes the

proof. O

92—

Al o

Problem 15. Let a, b, ¢ be positive real numbers satisfying a + b+ c = 1. Show that

a n b vabc <14 3\/5.
a+bc b+ca c+abd 4
Solution. We want to establish that
1 1 o 3v3
+ C <14 2Ye

+ <
1+2  1+9 142
Set x = %73/:\/%,22\/%1’. We need to prove that

1 1 z 3v3

<14 —
1—|—m2+1+y2+1+z2_ + 4’

where z,y,z > 0 and zy + yz + zx = 1. It’s not hard to show that there exists A, B,C € (0,7)
with

A B C
m:tang,y:tani,z:tani, and A+ B+ C =m.

The inequality becomes

1 1 tan & 3V3
yivha =+ 202§1+\f
1+ (tan4)” 1+ (tanZ)” 1+ (tan§) 4
or \f
1 3V3
1—|—§(COSA+COSB+SiHC)§1—|—T
or

3V3

cos A+ cosB+sinC < —
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Note that cos A + cos B = 2 cos (AJFTB) cos (A_TB). Since ‘A_TB| < 3, this means that

A+ B - C
cos A + cos B < 2cos <;> = 2cos <7T 5 >

It will be enough to show that

2 cos (ﬂ ; C) +sinC' < 3\2/§a

where C' € (0, 7). This is a one-variable inequality.® It’s left as an exercise for the reader.

Here, we give another solution of the problem 10.

(Latvia 2002) Let a, b, ¢, d be the positive real numbers such that

1 1 1 1

=1.
1—|—a4+1—|—b4+1—|—c4+1—|—d4

Prove that abed > 3.

Second Solution. (given by Jeong Soo Sim at the KMO Weekend Program 2007) We need to prove

the inequality ab*c*d* > 81. After making the substitution

1 1 1 1
A=——_ B= C = D—_—
1+a*’ 1+ 6% 1+t 1+ d4’

we obtain 1_A 1B 1_C
4 - 4 - 4 -
= — b = = _—
“C T A B '° T C D
The constraint becomes A + B + C + D = 1 and the inequality can be written as

d* =

1—A_1—B.1—C.1—D281.
A B C D

or
B+C+D C+D+A D+A+B A+B+C>81

A B C D -

or

(B+C+D)(C+D+A)(D+A+B)(A+B+C)>81ABCD.

However, this is an immediate consequence of the AM-GM inequality:

=
=
=

(B+C+D)(C+D+A)(D+A+B)(A+B+C)>3(BCD)3-3(CDA)3-3(DAB)

Problem 16. (Iran 1998) Prove that, for all x,y,z > 1 such that % + i + % =2,

Vity+z>Vr—1+y—1+vz—1

3 Differentiate! Shiing-shen Chern
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First Solution. We begin with the algebraic substitution a = v —1, b = y—1, ¢ = vz — 1.
Then, the condition becomes

1 + 1 + 1
1+a2 1486  1+4¢2

and the inequality is equivalent to

=2 & a’P?+b2P + a4+ 24550%P2 =1

3
Va2 +2+2+3>a+b+e & abtbetca< .

Let p = be, g = ca, r = ab. Our job is to prove that p+ ¢+ r < % where p? + ¢ + 2 + 2pqr = 1.
By the exercise 7, we can make the trigonometric substitution

p=-cosA, gq=cosB, r=cosC for some A, B,C € (O, g) with A+ B+ C = 7.

What we need to show is now that cos A+cos B+cos C' < % It follows from Jensen’s inequality. [J

Problem 17. (Belarus 1998) Prove that, for all a,b,c > 0,

a b c¢c_a+db b+ec
-+ -> -

1.
b ¢ a  b+ec c+a+

Solution. After writing x = ¢ and y = 7, we get

c y a+b x+1 b+c 14y

I

a z b+c 14y c+a y+az

One may rewrite the inequality as
By a4+ + y2 > x2y + 22y + 2acy2.
Apply the AM-GM inequality to obtain

:C3y2 +x

3,2 3.3

> 2y, Ty +r+y+y
2

Adding these three inequalities, we get the result. The equality holds if and only if x =y =1 or

a=b=c O

> 2xy2, 2 + y2 > 2xy.

Problem 18. (IMO Short-list 2001) Let x1,--- ,x, be arbitrary real numbers. Prove the in-

equality.
T T2 Tn

1+x12+1+m12+x22+'”+1+9512+"'+56n2

< +/n.

First Solution. We only consider the case when z1, - - - , ,, are all nonnegative real numbers.(Why?)*
Let xg = 1. After the substitution y; = .%‘02—|—- . -—{—l‘iQ foralli =0, -- ,n, we obtain x; = /y; — ¥i—1-
We need to prove the following inequality

n
Z VYi ; Yi—1 < \/ﬁ
. 7

Since y; > y;—1 for all i = 1,--- ,n, we have an upper bound of the left hand side:

Yi — Yi-1 Yi — Yi-1 1
SIS Ly iy

Yi—1 Yi

4 x

lz1] |zl E29
Thas 5 + 5 + +

Tn
ot Fan? = THoy I+z12+as Itz 24 tan?”

2+ 2++

@
1+z12+zg

24



We now apply the Cauchy-Schwarz inequality to give an upper bound of the last term:

n
1 1 1 1
Yi—1 i—0 Yi—1 Yi Yo Yn

Since yo = 1 and y,, > 0, this yields the desired upper bound /n.

O]

Second Solution. We may assume that xq,--- ,x, are all nonnegative real numbers. Let zg = 0.
We make the following algebraic substitution

xT; 1 t;
t; = ¢ =—— and §; = ——
CVak e 142 V1412
foralli =0,--- ,n. It’s an easy exercise to show that ﬁ =co---¢8i. Since s; = V1 —¢;2

the desired inequality becomes

coc1V 1 —c12 + coerca/1 — o2 + -+ cger e/ 1 — cp? < V/n.

Since 0 < ¢; <1foralli=1,---,n, we have
n n
Zco--'ci\/l—cﬂSZCO' V1—g¢ —Z\/ cci—1)? — (co - cim164)2.
i=1 i=1

Since ¢g = 1, by the Cauchy-Schwarz inequality, we obtain

Z Vo -cim1)? = (o cim16)? < ”Z ~¢i-1)? = (co- - cim16)?] = V/n [l = (co -~ cn)?].

25



2.3 Increasing Function Theorem

Theorem 2.3.1. (Increasing Function Theorem) Let f : (a,b) — R be a differentiable func-
tion. If f'(x) > 0 for all x € (a,b), then [ is monotone increasing on (a,b). If f'(x) > 0 for all
x € (a,b), then f is strictly increasing on (a,b).

Proof. We first consider the case when f’(z) > 0 for all x € (a,b). Let a < 21 < x2 < b. We want
to show that f(x1) < f(x2). Applying the Mean Value Theorem, we find some ¢ € (z1,z2) such
that f(z2) — f(x1) = f'(¢)(z2 — z1). Since f’(¢) > 0, this equation means that f(z2) — f(z1) > 0.
In case when f/(x) > 0 for all € (a,b), we can also apply the Mean Value Theorem to get the
result. O

Problem 19. (Ireland 2000) Let z,y > 0 with x +y = 2. Prove that 2*y*(2? + y?) < 2.

First Solution. After homogenizing it, we need to prove

6
T+
2 ( 5 y> > 2?y?(2® + 7)) or (x+y)° > 32077 (2 +47).

(Now, forget the constraint  +y = 2!) In case xy = 0, it clearly holds. We now assume that
xy # 0. Because of the homogeneity of the inequality, this means that we may normalize to xy = 1.
Then, it becomes

1\° 2 1 3
r+—| 232(z°+ — | or p*>32(p—2).
x x

where p = (z + %)2 > 4. Our job is now to minimize F(p) = p® — 32(p — 2) on [4,00). Since
F'(p) = 3p? — 32 > 0, where p > /32, F is (monotone) increasing on [4,00). So, F(p) > F(4) =0
for all p > 4. O

Second Solution. As in the first solution, we prove that (z +y)% > 32(2? +y?)(zy)? for all 2,y > 0.

In case z = y = 0, it’s clear. Now, if 22 + 32 > 0, then we may normalize to 22 4+ y? = 2. Setting
2 2

p = xy, we have 0 < p < % =1and (z +y)? = 2?2 +y? + 2zy = 2 + 2p. It now becomes

(2+2p)3 > 64p* or p* —5p* +3p+1>0.

We want to minimize F(p) = p® — 5p? +3p + 1 on [0,1]. We compute F'(p) = 3 (p - %) (p — 3).
We find that F* is monotone increasing on [0, ] and monotone decreasing on [1,1]. Since F(0) =1
and F (1) = 0, we conclude that F(p) > F(1) =0 for all p € [0, 1]. O

Third Solution. We show that (x + )% > 32(z% + y?)(2y)? where 2 > y > 0. We make the
substitution v = ¢ + y and v = x — y. Then, we have u > v > 0. It becomes

2 2 2 2\ 2
u6232<u ;—v)(u 4v> or u® > (u? + %) (u? —v?)2.

Note that u* > u* —v* > 0 and that u? > u? —v? > 0. So, u® > (u* — v*)(u? — v?)
(u? 4+ v?) (u?

Ol

—?)2,

Problem 20. (IMO 1984/1) Let x,y,z be nonnegative real numbers such that x +y + z = 1.
Prove that 0 < zy + yz + 2z — 2zyz < 2—77
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First Solution. Let f(x,y,z) = xy+yz+zx—2xyz. We may assume that 0 <z <y < z < 1. Since
T +y + z = 1, this implies that z < % It follows that f(x,y,2) = (1 — 3x)yz + xyz + zax + 2y > 0.
Applying the AM-GM inequality, we obtain yz < (y—é—z)Q = (ka)? Since 1 — 2z > 0, this implies
that

1—2\?2 —o3 a2 41
x) (1-922) = z° + x4+ .

Fap2) =oly+2) 4 ysll ~ 20) < (1= 2) + (45 ’

Our job is now to maximize a one-variable function F(z) = 1(—223 + 22 + 1), where z € [0, %]
Since F'(z) = 3z (3 —2) > 0 on [0, 3], we conclude that F(z) < F(3) = o forall z € [0,3]. O

(IMO 2000/2) Let a,b,c be positive numbers such that abc = 1. Prove that

et i) o)

Fifth Solution. (based on work by an IMO 2000 contestant from Japan) Since abc = 1, at least one
of a, b, c is greater than or equal to 1. Say b > 1. Putting ¢ = %, it becomes

1 1 1
-1+ (-1 ——-1+-)<1
(a +b)(b +ab)<ab +a> <

b — a?b3 — ab® — a?b? + 3ab? —ab+ b —b> —b+1> 0.

or

Setting = = ab, it becomes f;(x) > 0, where
frt) =13+ 0> — % —bt? + 30t —t* —b* —t — b+ 1.

Fix a positive number b > 1. We need to show that F(t) := f,(t) > 0 for all ¢ > 0. It follows from
b > 1 that the cubic polynomial F'(t) = 3t — 2(b+ 1)t — (b*> — 3b + 1) has two real roots

b+1—V4b2 —T7b+4 b4+1+V4b2 —7b+4
3 and \ = 5 .

Since F' has a local minimum at ¢t = A, we find that F(¢t) > Min {F(0), F(\)} for all t > 0. We
have to prove that F(0) > 0 and F(\) > 0. We have F(0) =b% — 0> —b+1=(b—1)2(b+1) > 0.
It remains to show that F(\) > 0. Notice that A is a root of F/(t). After long division, we get

1, b+1\ 1
F(t) = F'(t) <3t -~ ;) +3 ((—8b° + 14b — 8)t + 8b> — 7b* — Tb+ 8) .

Putting ¢t = A, we have

1
F(\) = 5 ((—8b* + 14b — 8)A + 8b® — 7b* — b + 8) .

Thus, our job is now to establish that, for all b > 0,

b+ 1+ V4b> —Th+ 4
3

(—8b2+14b—8)< >+8b3—7b2—7b+820,

which is equivalent to

166> — 15b% — 150 + 16 > (8b* — 14b + 8)\/4b? — Th 4 4 .
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Since both 1663 — 156> — 15b + 16 and 8b* — 14b + 8 are positive,® it’s equivalent to
(160> — 156 — 15b 4 16)* > (8b* — 14b + 8)2(4b* — 7b + 4)
or
864b° — 3375b% 4 50220 — 3375b% + 864b > 0 or 864b* — 3375b + 5022b% — 3375b + 864 > 0.

Let G(z) = 8642 — 337522 + 502222 — 33752 + 864. We prove that G(z) > 0 for all z € R. We
find that

G'(z) = 34562° — 1012522 + 100442 — 3375 = (z — 1)(345622 — 6669z + 3375).

Since 345622 — 6669z + 3375 > 0 for all x € R, we find that G(z) and x — 1 have the same sign. It
follows that G is monotone decreasing on (—o0, 1] and monotone increasing on [1, 00). We conclude
that G has the global minimum at x = 1. Hence, G(z) > G(1) =0 for all z € R. O

°It’s easy to check that 16b% — 156 — 15b + 16 = 16(b> — > — b+ 1) + b2 + b > 16(b*> — 1)(b — 1) > 0 and
8b% — 14b+8 = 8(b— 1) +2b > 0.
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2.4 Establishing New Bounds

We first give two alternative ways to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbers a, b, ¢, we have

a n b . c >§
b+¢c c+a a+b 2
1\2
Proof 4. From (ﬁ"c — 5) > 0, we deduce that
8a
a 1 @—1_ 8a—b—c¢

> . .
b+c 4 s +1 4lat+b+o)

It follows that

8a—b—rc 3
Z b+c> Z a+b+c T2

cyclic cyclic
Proof 5. We claim that
3 3
2
a > 3 a3 N or 2(a%+b%—|—c%)2 %(b—l—c)
b+c 2(@5 + b2 +c5)

The AM-GM inequality gives a3 + b3 + b3 > 3a2b and a3 + 3 + c3 > 3azc . Adding these two
inequalities yields 2 (a% + b3 + c%> > 3a%(b + ¢), as desired. Therefore, we have

3
b+ Z PERNPERNE

cyclic Cychc ag +b2 +c

M\w

Some cyclic inequalities can be proved by finding new bounds. Suppose that we want to establish

that
Z F(z,y,2z) > C.

cyclic

If a function G satisfies

(1) F(z,y,2) > G(z,y, 2) for all z,y,z > 0, and
(2) chchc G(z,y,z) = C for all z,y,z >0,

Z (z,y, 2 ZGwy, = C.

cyclic cyclic

then, we deduce that

For example, if a function F' satisfies

T

an 7227
( y ) r+y—+z

for all x,y, z > 0, then, taking the cyclic sum yields

Z F(xz,y,z) > 1.

cyclic

As we saw in the above two proofs of Nesbitt’s inequality, there are various lower bounds.
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Problem 21. Let a, b, ¢ be the lengths of a triangle. Show that

a b c
+ + < 2.
b+c c+a a+bd

Proof. We don’t employ the Ravi substitution. It follows from the triangle inequality that

a a
> e <X Taiiias
cyclic b+c cyclic i(a +bo+ C)

]

+y+2)? where 2,y, 2 > 0. There are well-known

One day, I tried finding a new lower bound of (x
lower bounds such as 3(xy +yz + zx) and 9(myz)§. But I wanted to find quite different one. I tried

breaking the symmetry of the three variables z,y, z. Note that
(x+y+22 =2+ + 22 +oy+ay+yz+yz+ 22+ 2o
I applied the AM-GM inequality to the right hand side except the term 2

y2+z2+azy+xy+yz+yz+zx+zx2Sx%y%z%.

3
4

It follows that

(z+y+2)2>a? +8:L'%y%z w3 (IL‘% + 8y%z%) )
et a, b, c be positive real numbers. Prove that
IMO 2001/2) L b,chb iti 1 b P h
a n b n c -1
a* + 8be + 8ca 2+ 8ab
VaZz+8bc Vb2 +8 Ve + 8ab

Second Solution. We find that the above inequality also gives another lower bound of x + y + z,

that is,
1/ 3 3 3
r+y+z2> \/m (932 +8y424).
It follows that X
xr4 x
- > R

3 3 3
cyclic xr2 + SyZ z4 cyclic

After the substitution z = a%,y = b%, and z = c%, it now becomes

a
—_— > 1.
Z Va2 +8bc

cyclic
O

Problem 22. (IMO 2005/3) Let x, y, and z be positive numbers such that xyz > 1. Prove that

25 22 Yo — o2 25,2
5 2 3T 5 2 2T 5 2 ;=0
T2+ Yy +z yw+z2+x 224ty
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First Solution. It’s equivalent to the following inequality
5

2 5 2 5 2
Tt -z Y =y ze—z
s +1 ——— + 1 ———"—+1) <3
<x5+y2+22+ >+<y5+z2+x2+ >+<z5+w2+y2+ >—

or

i AR el i ol o i

<3.
P +yt 422 P22+ PS4ty T

With the Cauchy-Schwarz inequality and the fact that zyz > 1, we have
5,.2 2 2 L2y s (02 102 4 ,2)2 $2+y2+z2<yz+y2—|—z
(2" +y" +2°)(yz +y" +27) > (2" +y” +2°)° or PR Bl Sy e L

2

Taking the cyclic sum and 22 4 y? + 22 > zy + yz + 2z give us
TY +yz + zx

R AR el ol o e
2+ oyt 422 T

y5+z2+x2+z5+1‘2+y2 -

x° +y? + 22
O
Second Solution. The main idea is to think of 1 as follows :
25 yP 5 22 y? 52
SRR ity senme s R - sempes Sy S S s S, S ST R S - S S L
4y +z Yy +zc+x 2tz ty 4y +z Yy +zc+x 22 t+xtty
We first show the left-hand. It follows from y* + 2% > 32 + y23 = yz(y? + 2?) that
x° x° B xt

4, .4 2, .2 2, .2
x 27) > xyz %) > z° or > = .
7420 zayzly" +27) 2y + d+y?+22 T tayt+at t4yt4t
Taking the cyclic sum, we have the required inequality. It remains to show the right-hand.
[First Way| As in the first solution, the Cauchy-Schwarz inequality and zyz > 1 imply that

2 2, .2 2
5, .92, .2 2, .2 2, .2, .2\2 ¥ (yz +y° + 2°) z
@y )ty ) 2 @y ) o e 2 i

Taking the cyclic sum, we have
2

2 2 2

I

(@2 4+ y? + 22)? ¢ 20 +y? 4 22
cyclic

cyclic

Our job is now to establish the following homogeneous inequality

2 (yz +y* + 2°) 2., .2 22 2 2 2 4 2
IZZ<2+ 2 1 2>2@(x+y+z)222xy+2xyz@2x szyz.
cyclic z Y o cyclic cyclic cyclic cyclic

However, by the AM-GM inequality, we obtain

Zm4: Z ot +yt > Zx2y2: sz (?JQ;FZZ) > Z:C2yz.

2 T .
cyclic cyclic

cyclic cyclic
[Second Way| We claim that
2zt + y4 + 24+ 4:r2y2 + 42222
4(x? + y% + 22)?
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We do this by proving

20 + yt + 24 + day? + 42222 22yz
>
d(z? 4 y? + 22)? Tt ytr4ysd

because zyz > 1 implies that

z?yz _ z? - z?
al b P +y2d 2D g2y 2 T b g2 42

TYz

Hence, we need to show the homogeneous inequality
2zt + oy + 21+ 42®y? + 42?2 (2t + P2+ y2d) > ey (2 4 2 + 222
However, this is a straightforward consequence of the AM-GM inequality.
(22t + oy 4+ 21+ 42®y? + 42?2 (2t + P + y2d) — ety (2?4 P + 2P)?
= (2® +atyt + 2% + 2% + oy + P20) + (2 F ot 4 202 1 B 4y 4523
+2(259% 4+ 2522) — 629>z — 62ty — 22592
63/28 - xhyt - aby? - aby? - yTz 325 + 63/a8 - atat - 2622 1622 . 2T . 523

26y2 - 2622 — 62ty 2 — 62ty — 225y2

v

= 0.

Taking the cyclic sum, we obtain

1= Z 224 4yt 4 2% + da?y? + 4222 S Z x?
4(.%.2 + y2 + Z2>2 — .’,175 + y2 + 22'

cyclic cyclic

Third Solution. (by an IMO 2005 contestant Iurie Boreico® from Moldova) We establish that
R 25— 2

> :
2 +y?+ 22 T 32?4y + 22)

It follows immediately from the identity

x5 _ $2 $5 _ xz (xs _ 1>2x2<y2 4 22)

w5+ 22 w3242 +22)  a3(a2 42 + 22)(ad +y2 + 22)

Taking the cyclic sum and using xyz > 1, we have

r — — r —yz .
o+ y?+22 T by + 22 x) T b+ y? 22 ve) =

cyclic cyclic cyclic

Here is a brilliant solution of

Problem 23. (KMO Weekend Program 2007) Prove that, for all a,b,c,z,y,z > 0,

o by 4 ¢ <(a+b+c)(a:+y+z)
a+x b+y c+z at+btctrty+z

SHe received the special prize for this solution.
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Solution. (by Sanghoon) We need the following lemma:
Lemma. For all p, q,wi,ws > 0, we have
pe  _ wi’p+uwi’q
PHaq T (w+ws)?

Proof of lemma. It’s equivalent to

(p+q) (w12p + w2QQ) — (w1 +w2)’pg >0

or
(wip — WQQ)z > 0.

Taking (p,q,wi,w2) = (a, 2,z +y + z,a + b+ ¢) in the lemma, we get

ar_ (z+y+2)%a+(a+b+o)

atz ™  (z+y+zt+atbdtc)’

Similarly, we obtain
by <(x+y+@%+wa+b+@%

b+y = (z+y+ztatbtc)’
and ) )
cz <(J:—|—y—i—z) c+(a+b+c)z
¢tz  (z+y+z+a+tbte)?
Adding the above three inequalities, we get
ar_ by 4 ¢ <(m—i—y+z)2(a+b+c)—|—(a—}—b+c)2(:c+y—|—z)
atz bty ctz7 (x+y+z+atbte)? '
or
azx by cz <(a—|—b+c)(fv+y+z)

+ + < .
a+zxr b+y c+z a+bt+ctz+y+z
O

Exercise 5. (USAMO Summer Program 2002) Let a, b, ¢ be positive real numbers. Prove

that
2 2 2
2a \3 2b 3 2c 3
+ + > 3.
b+c c+a a+b

>3 (%)

Wl

(Hint. [TJM]) Establish the inequality (5%3)

Exercise 6. (APMO 2005) (abc =8, a,b,c > 0)

a? v? c? 4
> =
S0 e o e 3

(Hint.) Use the inequality ﬁ > QJF% to give a lower bound of the left hand side.
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Chapter 3

Homogenizations and Normalizations

Every Mathematician Has Only a Few Tricks. A long time ago an older and well-known number
theorist made some disparaging remarks about Paul Erdos's work. You admire Erdos's contributions to
mathematics as much as I do, and I felt annoyed when the older mathematician flatly and definitively stated
that all of Erdos’s work could be reduced to a few tricks which Erdos repeatedly relied on in his proofs. What
the number theorist did not realize is that other mathematicians, even the very best, also rely on a few tricks
which they use over and over. Take Hilbert. The second volume of Hilbert's collected papers contains Hilbert's
papers in invariant theory. I have made a point of reading some of these papers with care. It is sad to note
that some of Hilbert s beautiful results have been completely forgotten. But on reading the proofs of Hilbert's
striking and deep theorems in invariant theory, it was surprising to verify that Hilbert's proofs relied on the
same few tricks. Even Hilbert had only a few tricks! Gian-Carlo Rota, Ten Lessons I Wish I Had
Been Taught, Notices of the AMS, January 1997

3.1 Homogenizations

Many inequality problems come with constraints such as ab =1, zyz = 1, z4+y+2z =1. A
non-homogeneous symmetric inequality can be transformed into a homogeneous one. Then we
apply two powerful theorems : Shur’s inequality and Muirhead’s theorem. We begin with a simple
example.

Problem 24. (Hungary 1996) Let a and b be positive real numbers with a +b = 1. Prove that

a? b2 1
+ > .
a+1 b+1— 3

Solution. Using the condition a + b = 1, we can reduce the given inequality to homogeneous one,
i. e.,

1 a? b? 9 9

3 < + b+ab® < a® +b°,

37 @tb)at(@tb) (@+rdo)bt(arp) = 7T =
which follows from (a® + b%) — (a?b + ab?®) = (a — b)%(a + b) > 0. The equality holds if and only if
a=b=3. O

The above inequality a?b+ ab® < a® 4 b3 can be generalized as following :

Theorem 3.1.1. Let ay,az, by, be be positive real numbers such that a1+ag = b1+bg and maz(ay,as) >

mazx(by,bg). Let x and y be nonnegative real numbers. Then, we have %1y + x%2y4 > xbiybz 4
b2, ,b1

HACTTICH
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Proof. Without loss of generality, we can assume that a; > a9,b; > by, a1 > by. If x or y is zero,
then it clearly holds. So, we assume that both z and y are nonzero. It follows from a +as = b1 +bs
that a1 — ag = (b1 — a2) + (ba — ag). It’s easy to check

My 4 p2y™ — xblyb2 _ $b2yb1 = p%2y® (xal—lm 4y xbl—abeQ—Cm _ $b2—a2yb1—a2)
— xazyaz (xln—az _ yb1—a2> (xbz—az _ ybz—@)
1

- 02902 (xbl B yb1> <xb2 B be) =

Remark 3.1.1. When does the equality hold in the theorem 8%

We now introduce two summation notations chchc and Zsym. Let P(z,y, z) be a three variables
function of z, y, z. Let us define :

> P(x,y,2) = P(z,y,2) + P(y,2,7) + P(2,2,y),

cyclic

> P(z,y,2) = P(x,y,2) + P(x,2,9) + P(y,2,2) + P(y, 2,2) + P(z,2,y) + P(2,y, ).

sym

For example, we know that

Z By =23y + P2 + P, Z 23 =2(2% 4+ 3 + 23)

cyclic sym

Z$2y =2’y + 2%z + Y’z + y’a + P+ 2Py, nyz = 6xyz.

sym sym

Problem 25. (IMO 1984/1) Let x,y,z be nonnegative real numbers such that x +y + z = 1.
Prove that 0 < zy + yz + 2z — 2zyz < 2—77 .

Second Solution. Using the condition z +y+ z = 1, we reduce the given inequality to homogeneous
one, i. e.,

7
0§(xy+yz+za:)(x+y+z)—2:z:yz§ﬁ(x—ky—i-z)?’.

The left hand side inequality is trivial because it’s equivalent to

0<L zyz + Zny.

sym

The right hand side inequality simplifies to

7 Z $3+15zyz—62x2y20.

cyclic sym

In the view of

7Zx3+15myz—62x2y: 221’3—21‘22/ +95 S:Uyz—l—Z:L‘?’—ZmQy ,

cyclic sym cyclic sym cyclic sym
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it’s enough to show that
2 Z 3 > Zny and 3zyz + Z z3 > Za:2y.
cyclic sym cyclic sym

We note that

2 =) aty=) @+y’) - Y @ytaP)= ) @ +y’ a2y —ay’) >0

cyclic sym cyclic cyclic cyclic

The second inequality can be rewritten as

Z z(zx —y)(x—z) >0,

cyclic
which is a particular case of Schur’s theorem in the next section. ]

After homogenizing, sometimes we can find the right approach to see the inequalities:

(Iran 1998) Prove that, for all z,y,z > 1 such that % + % + % =2,

Vity+tz>Ve—1+y—1+Vz—1.

Second Solution. After the algebraic substitution a = %, b=1 ¢c= %,

y )
that

1 1 1 1—a 1-9b 1—-c
-4+ -4+-2> +4/— + ,
a b ¢ a b c

where a,b,c € (0,1) and a+b+ ¢ = 2. Using the constraint a +b+ ¢ = 2, we obtain a homogeneous

inequality
1 1 1 1 a+b+tc —a a+b+c —b a+b+c —c
1 b S s 2 2 2
\/2(a—i— +C)<a+b+c>_\/ a +\/ b + c
1 1 1 b+c—a c+a—>b a+b—c
(a+b+e)|—+—-—+—) >/ ——+ + ,
a b ¢ a b c

which immediately follows from the Cauchy-Schwarz inequality

\/[(b+ca)+(c+ab)+(a+bc)} <‘11+ll?+i>2\/b+2_a+\/6+z_b+\/a+i_c‘

O

we are required to prove

or
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3.2 Schur’s Inequality and Muirhead’s Theorem

Theorem 3.2.1. (Schur) Let x,y, z be nonnegative real numbers. For any r > 0, we have

Z " (x —y)(x —z) > 0.

cyclic

Proof. Since the inequality is symmetric in the three variables, we may assume without loss of
generality that x > y > z. Then the given inequality may be rewritten as

(@ —y)la"(x—2) -y (y = 2)] + 2" (x = 2)(y — 2) 20,
and every term on the left-hand side is clearly nonnegative. O
Remark 3.2.1. When does the equality hold in Schur’s Inequality?
Exercise 7. Disprove the following proposition: For all a,b,c,d > 0 and r > 0, we have
a(a—=b)a—c)la—d)+b"(b—c)(b—d)(b—a)+c" (c—a)(c—c)(a—d)+d (d—a)(d—b)(d—c) > 0.

The following special case of Schur’s inequality is useful :

Z z(x—y)(x—2)>0 & 3zyz+ Z x322x2y & nyz+2x3222x2y.

cyclic cyclic sym sym sym sym
Corollary 3.2.1. Let x,y, z be nonnegative real numbers. Then, we have
Bzyz+a° + 0 + 2 2 2 ((ay)? + (v2)3 + (22)3) .
Proof. By Schur’s inequality and the AM-GM inequality, we have

3ryz + Z 23 > Z 22y + xy? > Z Z(xy)%.

cyclic cyclic cyclic

We now use Schur’s inequality to give an alternative solution of

(APMO 2004/5) Prove that, for all positive real numbers a, b, c,

(a® +2)(b* + 2)(c* 4+ 2) > 9(ab + be + ca).
Second Solution. After expanding, it becomes
8 + (abc)? + 2 Z a’b? + 4 Z a®>9 Z ab.
cyclic cyclic cyclic
From the inequality (ab — 1)% + (bc — 1)? + (ca — 1)? > 0, we obtain
6+ 2 Z a’b? > 4 Z ab.
cyclic cyclic

Hence, it will be enough to show that

2+(abc)2+42a2252ab.

cyclic cyclic
Since 3(a? + b? + ¢?) > 3(ab + be + ca), it will be enough to show that
2 + (abc)?® + Z a® > 2 Z ab,
cyclic cyclic

which is a particular case of the following result for ¢t = 1. O
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Corollary 3.2.2. Lett € (0,3]. For all a,b,c >0, we have
(3—1) +t(abc)% + Z a? > 2 Z ab.
cyclic cyclic

In particular, we obtain non-homogeneous inequalities

5 1

§+§(abc)4+a2+b2+cz > 2(ab + be + ca),
2+ (abc)? + a® + b* + ¢* > 2(ab + be + ca),
14 2abc 4 a® + b + ¢* > 2(ab + be + ca).

Proof. After setting z = a%, Yy = b%, z= cg, it becomes
3—t —I-t(xyz)% + Z 3> 2 Z (xy)%
cyclic cyclic

By the corollary 1, it will be enough to show that
3
3—t+t(xyz)t > 3xyz,
which is a straightforward consequence of the weighted AM-GM inequality :

3—1 t
Tol—l—g(xyz)

One may check that the equality holds if and only if a =b=c¢ = 1.

t
3 3—t
t

>173 ((:Uyz)%)§ = 3xyz.

(IMO 2000/2) Let a,b,c be positive numbers such that abc = 1. Prove that

o) e )

Second Solution. It is equivalent to the following homogeneous inequality’ :

(a - (abc)1/3 + (abcb)2/3> <b— (abc)1/3 + (abCC)Q/S> <C— (abc)1/3 4 ((lbca)z/?’> < abc.

After the substitution a = z3,b = y3, ¢ = 23 with z,y, 2 > 0, it becomes
2 2 2
<x3 —xyz + (my;:) > <y3 — Yz + (xy;:) ) (23 —xyz + (a:y;:) ) < :z:3y3z3,
Yy z T

which simplifies to

(mQy—y2z+z2x) (y2z—z2:v+x2y) (z2x—x2y—|—y2z) < 3y358
or
3x3y3z3—l— Z $6y3 > Z x4y4z+ Z x5y2z2
cyclic cyclic cyclic
or
3(2%y)(y72)(%x) + Y (2°y)® = ) (%)’ (v72)
cyclic sym

which is a special case of Schur’s inequality.

'For an alternative homogenization, see the problem 1 in the chapter 2.
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Here is another inequality problem with the constraint abc = 1.

Problem 26. (Tournament of Towns 1997) Let a,b,c be positive numbers such that abc = 1.

Prove that
1 1 1
<1.

a+b+1+b—|—c—|—1+c+a—|—1 -

Solution. We can rewrite the given inequality as following :

1 1 1 1
< .
a+ b+ (abe)l/3 * b+ c+ (abc)l/3 * c+a+ (abc)l/3 = (abe)l/3

We make the substitution a = 23,b = 93, ¢ = 22 with z,y, 2 > 0. Then, it becomes

1 1 1
x3+y3+$yz+y3+z3+a:yz+z3+x3+:cyz

IN

1
Yz
which is equivalent to
TYZz Z (2% + 3+ 2y2) (Y + 22 +ayz) < (23 + 4P + ay2) (VP + 22 4 2y2) (23 4 23 + 2y2)
cyclic

or

Zx6y3 > Zx5y222 !

sym sym
We apply the theorem 9 to obtain

Zxﬁ’ys _ Zx6y3+y6x3

sym cyclic

Z x5y4 + y5x4

cyclic

= > Pt +2Y

cyclic

> Y PP+

cyclic

_ Zx5y222'

sym

v

Exercise 8. ([TZ], pp.142) Prove that for any acute triangle ABC,
cot? A + cot? B + cot® C' + 6 cot A cot B cot C > cot A + cot B + cot C.
Exercise 9. (Korea 1998) Let I be the incenter of a triangle ABC. Prove that

BC? + CA? + AB?
3 .
Exercise 10. ([IN], pp.103) Let a,b, c be the lengths of a triangle. Prove that

TA> + IB*>+1C? >

a’b + a’c + b%c + b2a + Fa + b > a® + b + ¢ + 2abe.
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Exercise 11. (Suranyi’s inequality)) Show that, for all 1, ,z, >0,
m—1)(z1"+ - x,")+nxy- -z > (x1+ - ) (51:1"71 —i—-‘-xn"*l).
Theorem 3.2.2. (Muirhead) Let ay,as,as, by, b, b3 be real numbers such that
ap > az > ag > 0,by > by > b3 > 0,a1 > by,a1 +az > by + bz, a1 + az + az = by + by + bs.
Let x,y, z be positive real numbers. Then, we have Zsym xty*2z93 > Zsym xbryb2 2bs

Proof. Case 1. by > ag : It follows from a; > aj + a2 — by and from a; > by that a3 > max(a; +
as — by, by) so that maz(ay,as) = a1 > max(a; +az —by,b1). From a; +as — by > by +a3— by = as
and aj + ag — by > by > bs, we have maz(a; + ag — b1,a3) > max(be,bs). Apply the theorem 8
twice to obtain

me az a3 _ Z 293 (xMy92 4 20

sym cyclic

Z Za3(xa1+a2—b1 +$b1 a1+az— b1)

cyclic

_ Z g} (ya1+a2—b1 203 4y za1+a2—b1)

cyclic

> ) ah (e 4 yeR)

cyclic

— len b2 b3

sym

v

Case 2. b; < as : It follows from 3by > by +bs+bs = a1+as+ag > by+as+ag that by > as+az—by
and that aq > ag > by > ag + ag — by. Therefore, we have max(az, as) > max(b1,az + az — by) and
max(ay,az + ag — by) > max(be, bz). Apply the theorem 8 twice to obtain

Zxal az a3 _ Z L(y22%8 4 493 202)

sym cyclic

E P! (ybl Za2+a3*b1 + ya2+a3*b1 Zbl)

cyclic

_ E ybl (:L.U«l »a2taz—b + pa2taz—b Zal)

cyclic

> Z ybl ($b22b3 + xb3zb2)

cyclic

_ E xb1 b2 b3

sym

v

O]

Remark 3.2.2. The equality holds if and only if x =y = z. Howewver, if we allow x =0 ory =0
or z =0, then one may easily check that the equality holds when a1, as,as > 0 and by, b, b3 > 0 if
and only if

r=y=zorz=y,z=0o0r y=2, =0 o0r z=z, y=0.

We can use Muirhead’s theorem to prove Nesbitt’s inequality.
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(Nesbitt) For all positive real numbers a, b, ¢, we have

a n b . c >§
b+c¢c c+a a+b 2

Proof 6. Clearing the denominators of the inequality, it becomes

2Za(a+b)(a+c)ZS(a—i—b)(b—i—c)(c—i—a) or Za322a2b.

cyclic sym sym
(IMO 1995) Let a, b, ¢ be positive numbers such that abc = 1. Prove that

1 1 1
> —.
a3(b+c) + b3(c+ a) * cla+bd) ~ 2

w

Second Solution. It’s equivalent to

1 1 1 3
> .
a?(b+c) + b (c+a) * Aa+0b) ~ 2(abc)/3

Set a = 23,b = y3,c = 2% with x,y, 2 > 0. Then, it becomes chchc xg(yg+zd) > 2964 1. Clearing
denominators, this becomes
me 12+22x12y9z3+2339y9z6 > 3296113/ 2 4 628828
sym sym sym sym
or
<Zx12 12 Z:Cn 8 5) +2<Zx12 9,3 an 8 5) <Z$9 9,6 ng 8 8) >0,
sym sym sym sym sym sym
and every term on the left hand side is nonnegative by Muirhead’s theorem. O

Problem 27. (Iran 1996) Let z,y, z be positive real numbers. Prove that

1 1 1 9
(xy + yz + zx) ( + + =

z+y)? (y+2)?  (z+2)?

Proof. It’s equivalent to

4Zx y+2 Z x yz+6x2 2,2 Zx4y2 —6 Z x3y3 — 221’33/22 > 0.
sym cyclic sym cyclic sym
We rewrite this as following
(Z oy — Z x4y2> +3 <Z oy — Z x3y3> + 22yz | 3xyz + Z z3 — Za:Zy > 0.
sym sym sym sym cyclic sym
By Muirhead’s theorem and Schur’s inequality, it’s a sum of three nonnegative terms. O

Problem 28. Let x,y, z be nonnegative real numbers with xy + yz + zx = 1. Prove that

1 1 1 5
+ + >
r+y yYy+z z+<x
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Proof. Using xy 4+ yz + zx = 1, we homogenize the given inequality as following :

(zy +yz + 27) SN - 2> 2
xT z 2T -
gy z+y y+z z4+x) T \2

43y Ytz 4143 e 4 3802227 > Y ety 3oty

sym sym sym sym sym

or

or
(Z z’y — Z m4y2> +3 (Z z’y — Z x3y3> + xyz (Z z% 4 14 Z x2y + 38:cyz> > 0.
sym sym sym sym sym sym

By Muirhead’s theorem, we get the result. In the above inequality, without the condition xy +
yz 4+ zz = 1, the equality holds if and only if t = y,2 =0 or y=2,2=0 or z==z,y = 0. Since
xy + yz + zx = 1, the equality occurs when (x,y,z) = (1,1,0),(1,0,1), (0,1,1). O
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3.3 Normalizations

In the previous sections, we transformed non-homogeneous inequalities into homogeneous ones. On
the other hand, homogeneous inequalities also can be normalized in various ways. We offer two
alternative solutions of the problem 8 by normalizations :

(IMO 2001/2) Let a, b, ¢ be positive real numbers. Prove that

a L b 4 c 51
VaZ+8bc Vb2 +8ca V2 +8ab

b = —<¢_ 2 The problem is

Third Solution. We make the substitution z = a+%+c, Y= arirer = atite

of (2® +8yz) + yf(y° + 8zx) + 2f (2% + 8ay) > 1,

where f(t) = % Since f is convex on RT and = + y + 2z = 1, we apply (the weighted) Jensen’s
inequality to obtain

2 f(@? + 8y2) + yf (v + 822) + 2f (22 + 8uy) > [(0(a® + 8y2) + y(y? + 822) + 2(% + Say)).
Note that f(1) = 1. Since the function f is strictly decreasing, it suffices to show that
1> 2(2® + 8yz) + y(y® + 822) + 2(2* + 8xy).

Using = + y + z = 1, we homogenize it as (z +y + 2)® > x(2? + 8yz) + y(y* + 8zx) + 2(22 + 8zy).
However, this is easily seen from

(z+y+2)° —z(2® + 8yz) — y(y? + 8zz) — 2(22 + 8zxy) = 3[z(y — 2)* + y(z — 2)? + z(z — y)?] > 0.
OJ

In the above solution, we normalized to x + y + 2z = 1. We now prove it by normalizing to
ryz = 1.

Fourth Solution. We make the substitution x = 2—‘5, y=13 2= ‘c%’. Then, we get zyz = 1 and the

inequality becomes
1 1 1

+ n > 1
VI+8x VI+8y 1+8z

which is equivalent to

D V(1 +8z)(1+8y) = /(1 +8z)(1+8y)(1+ 82).

cyclic

After squaring both sides, it’s equivalent to

8(z+y+2)+2¢/(1+8z)(1+8y)(1+82) Y VI+8x>510.

cyclic

Recall that zyz = 1. The AM-GM inequality gives us  +y + z > 3,

4

(1+82)(1+8y)(1+82) > 925 -9y5 925 =729 and »_ VI+8> Y /95 > 9(ayz)s = 9.

cyclic cyclic

Using these three inequalities, we get the result. ]

P a
2Dividing by a + b + ¢ gives the equivalent inequality eyclic F— atbic — >1.
@rote? T latvra?
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(IMO 1983/6) Let a, b, ¢ be the lengths of the sides of a triangle. Prove that
a?b(a — b) + b?c(b — ¢) + c*a(c — a) > 0.
Second Solution. After setting a =y +2,b=2+2x, c=x +y for z,y,z > 0, it becomes
2 2,2

23z + e+ 2y > 2 yz + ay’z + xy2? or li——i-yf—i-—z.'x—l—y%-z.
Y z T

Since it’s homogeneous, we can restrict our attention to the case x + y + 2z = 1. Then, it becomes

i (2)+51(2) a1 ()21

where f(t) = t2. Since f is convex on R, we apply (the weighted) Jensen’s inequality to obtain

yf(§>+zf<i>+xf(;) f(y Ztz y+x Ji):f(1):1.

Problem 29. (KMO Winter Program Test 2001) Prove that, for all a,b,c > 0,

V(a2b + b2 + c2a) (ab? + be + ca2) > abe + v/ (a3 + abe) (b3 + abe) (¢3 + abe)

First Solution. Dividing by abc, it becomes

JErteg) (g e (2 ) (G o0) (5+1)

After the substitution z = 7, y = g, z = <, we obtain the constraint xyz = 1. It takes the form

\/(:c+y+z)(xy+yz+zx)21+§/<§+1) (%4‘1) <Z+1).

From the constraint xyz = 1, we find two identities

(Z+1) (Z+1) <Z+1> = (x;rz> (yzx> (Zzy> = (z+a)(z +y)(y+2),

(@+y+2)(zytyztze)=(@+y)y+2)(z+o)+ayz=(z+y)ly+2)(z+2z)+1
Letting p = ¢/(z + y)(y + 2)(z + ), the inequality now becomes /p3 + 1 > 1 4 p. Applying the
AM-GM inequality, we have p > </2\/@ -2\/yz - 2\/zx = 2. Tt follows that P> +1)—(14+p)? =
plp+1)(p—2)=0. O

Problem 30. (IMO 1999/2) Let n be an integer with n > 2.

(a) Determine the least constant C' such that the inequality
Z :rz:):j(:r +x)<C Z T
1<i<j<n 1<i<n

holds for all real numbers x1,--- ,x, > 0.
(b) For this constant C, determine when equality holds.
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First Solution. (Marcin E. Kuczma?®) For 1 = -+ = z,, = 0, it holds for any C' > 0. Hence, we
consider the case when x1 + - -+ + z, > 0. Since the inequality is homogeneous, we may normalize
tox1 +---+x, = 1. We denote

F(xy, - ,xn) = Z a:zmj(a:3+mj2)

1<i<j<n

From the assumption z1 + --- + x, = 1, we have

F(zy,- ,x,) = Z 357;3ZL‘]'+ Z $i$j3: Z xﬁin: Z zi‘?’(l—:c,-)

1<i<j<n 1<i<j<n 1<i<n  j#i 1<i<n
n
3
= § xi(x® — x;°)
=1

We claim that C = %. It suffices to show that

1 11
F R —,2,0,---,0).
(z1, X)) < 3 <2 5 0 0)

Lemma 3.3.1. 0 <z <y < % implies x> — 23 < y2 — y3.

Proof. Since z +y < 1, we get x +y > (z +y)? > 22 + zy + y>. Since y — x > 0, this implies that

y? — a2 >3 — a3 or y? — y? > 2% — 23, as desired. O

Case 1. T1 > X9 > >y,

()t

>axo>-->ap Letexy=xandy=1—xz=x0+ -+ x,. Sincey > xo, - ,Tp,

D=

F(zy, an) =2 y+zxz v — a <:vy+zxzy -y’ =y +yly’ — o).
=2

Since 23y +y(y? — y®) = 23y + 3 (1 — y) = wy(2® + y?), it remains to show that

ay(a® +y°) < 3

Using x +y = 1, we homogenize the above inequality as following.

1
vy +y7) < g(w+y)t

However, we immediately find that (x + y)* — 8xy(x? + y?) = (x — y)* > 0.

O
Exercise 12. (IMO unused 1991) Let n be a given integer with n > 2. Find the maximum value
of
Z zixj(Ti + ),
1<i<j<n
where x1,-++ ,xn >0 and x1 + -+ + x, = 1.

31 slightly modified his solution in [Au99)].
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We close this section with another proofs of Nesbitt’s inequality.

(Nesbitt) For all positive real numbers a, b, ¢, we have

a n b n c >§
b+c¢ c+a a+b 2

Proof 7. We may normalize to a +b+ ¢ = 1. Note that 0 < a,b,c < 1. The problem is now to
prove

b Z f(a g where f(x) = 1fx'
cyclic cyclic

Since f is convex on (0,1), Jensen’s inequality shows that
1 a+b+c 1 1 3
_ > — s — = — > —.
g X sz (T —p(5) =5 o Tz
cyclic cyclic

Proof 8. (Cao Minh Quang) Assume that a+b+c = 1. Note that ab+bc+ ca
More strongly, we establish that

IN
Wl
—
IS
+
>
+
o
S~—

N
Il
Wl

a b c 9
3—=(ab+b
b+c+c+a+a—|—b 2(a +betca)

a +9a(b+c) N b +9b(c+a) n c +90(a+b) >3
b+c 4 cta 4 a+b 4

The AM-GM inequality shows that

b+ b+
g MED o g o D gy

cyclic cyclic cyclic

or

Proof 9. We now break the symmetry by a suitable normalization. Since the inequality is symmetric

in the three variables, we may assume that a > b > c. After the substitution x = £,y = %, we have

x >y > 1. It becomes

: b L3 vy 3 1
— or - — .
bi1 S41 24272 7 y+l ozl 2 aty
We apply the AM-GM inequality to obtain
1 1 1 1
T+ y+ > 2 OT‘L-}- i >2— — 4 .
y+1 zxz+1 y+1 x+1 y+1 x+1
It’s enough to show that
LN SR U DU S SR A S |
y+1 x+172 z+y 2 y+1 - z+1 z+y 21+y) ~ (z+1)(z+y)’

However, the last inequality clearly holds for x >y > 1.

Proof 10. As in the previous proof, we may normalize to ¢ = 1 with the assumption a > b > 1.
We prove

>
b+1+a+1+a+b_

a b 1 3
5
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Let A=a-+b and B = ab. It becomes

a2+ +a+b 1 3 A2-2B+A 1 _ 3
2 2

CESNCE TS, or 243 — A2~ A+2> B(TA-2).

Since TA—2>2(a+b—1) >0 and A% = (a + b)? > 4ab = 4B, it’s enough to show that
4(2A3 —A? —A+2) > A%(TA-2) & A3 —24% —4A+8>0.

However, it’s easy to check that A3 —2A? —4A+8 = (A —2)%(A+2)>0.
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3.4 Cauchy-Schwarz Inequality and Holder’s Inequality

We begin with the following famous theorem:

Theorem 3.4.1. (The Cauchy-Schwarz inequality) Let aq,- - ,an,b1,- - , b, be real numbers.
Then,
(a2 4+ an?) (012 + -+ bp2) > (a1by + -+ - + anby)”.

Proof. Let A = Va2 +---+a,? and B = v/ b2+ ---+0b,%. In the case when A = 0, we get
a1 = -+ = a, = 0. Thus, the given inequality clearly holds. So, we may assume that A, B > 0. We
may normalize to

l=a’+ - Fa2=b+ - +b%

Hence, we need to to show that
laiby + -+ -+ apby| < 1.

We now apply the AM-GM inequality to deduce

2 2 2 2

Exercise 13. Prove the Lagrange identity :
n n n 2
<Z aﬁ) (Z bﬁ) - (Z aibz) = Z (aibj — ajbi)Q .
i=1 i=1 i=1 1<i<j<n

Exercise 14. (Darij Grinberg) Suppose that 0 < a3 < --- < a, and 0 < by < --- < b, be real
numbers. Show that

(5 () - ) (B) - ()

Exercise 15. ([PF], S. S. Wagner) Let ay, - ,ap,b1, -+ ,b, be real numbers. Suppose that
x € [0,1]. Show that

n n n
Zaf + 21‘26%07 szQ + QI'Zbibj > Za@bl + IL‘Zaibj
i=1 =1 i=1

i<j i<j i<j
Exercise 16. Let aq,--- ,ay,,b1,- -+ , by be positive real numbers. Show that
Viar+ -+ an)(br + -+ by) > Vb + -+ + Vanbn.
Exercise 17. Let aq,--- ,ay,,b1,- -+ , by be positive real numbers. Show that
2 2 2
£+...+QLZ<G1+ +an)
bl bn bl +---+ bn
Exercise 18. Let ay, -+ ,ayn,b1,- -+ , b, be positive real numbers. Show that
ai a 1 ai an\ 2
e T L [t H T I
612 bn2_(11+"‘+an <b1 bn>
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Exercise 19. Let aq,--- ,ay,,b1,- - , by be positive real numbers. Show that

ﬂ+...+a7n2 (a1+"'+an)2‘
by by, arby + -+ apby,

As an application of the Cauchy-Schwarz inequality, we give a different solution of the following
problem.

1,1 1 _
(Iran 1998) Prove that, for all z,y,z > 1 such that - + yTz= 2,

Vity+z>Vr—1+y—1+vz—1

. . -1 -1 -1 . .
Third Solution. We note that *—=+ yT +%= = 1. Apply the Cauchy-Schwarz inequality to deduce

—1 —1 —1
vl y-l,z )zw-uwww+w—x

\/W:\/(sz)( — , +—

We now apply the Cauchy-Schwarz inequality to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbers a, b, ¢, we have

a . b n c >§
b+¢c c+a a+b 2

Proof 11. Applying the Cauchy-Schwarz inequality, we have

(o) + et )+ @t o) (s + e+ ) 2

It follows that

9
2

v

a+b+c a+b+c a+b+c_ 9 a

- 3 >

b+c + c+a a—+b 2 or +Czdd;b+c_
y

Proof 12. The Cauchy-Schwarz inequality yields

2
a+b+c)?

a a (
ZmZa(b—i—c)z Za o Zb+622(ab+bc+ca)

cyclic cyclic

3
> =

, , 2
cyclic cyclic

Problem 31. (Gazeta Matematica) Prove that, for all a,b,c > 0,

Vat +a2b2 + b4+ b+ 02¢2 + et + Ve + a2 + at > av/2a2 + be + b\/262 + ca + e\/2¢2 + ab.
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Solution. We obtain the chain of equalities and inequalities

b2 a2b?
41 2202 L ph = 4 bt
> Vat+a2 + > <a+ >+< +2>

cyclic cyclic
b2 2p2
> 7 Cyzd;c (\/@4 +—+ \/b4 + a2> (Cauchy — Schwarz)
b2 a2c2
- 52 <\/ Lt 2)
cyclic
/3 L, a?b? L, a2
> —_— - _
> V2 ! <a+ ><a+2> (AM — GM)
cyclic
>\/§Z\/a4+@ (Cauchy — Schwarz)
> . 5 auchy — Schwarz
cyclic
= Z V2a* + a?be .
cyclic
O
Here is an ingenious solution of
(KMO Winter Program Test 2001) Prove that, for all a,b,c > 0,
V(a2 + b2c + c2a) (ab? + be2 + ca?) > abe + /(a3 + abe) (b3 + abe) (3 + abe)
Second Solution. (based on work by an winter program participant) We obtain
V/(a2b + b2c + c2a) (ab? + be? + ca?)
1
= 5\/[b(a2 + bc) + c(b? + ca) + a(c? + ab)] [c(a? + be) + a(b? + ca) + b(c? + ab)]
1
> 3 (\/%(a2 + be) + Vea(b? + ca) + Vab(c? + ab)) (Cauchy — Schwarz)
3
> 3 {/ Vibe(a? + be) - /ea(b? + ca) - Vab(c? + ab) (AM — GM)
1
= 3 /(a3 + abe) (b3 + abe) (3 + abe) + /(a3 + abe) (b3 + abe) (3 + abe)
1
> 3 \3/2\/a3 -abc - 2V3 - abe - 2V - abe 4+ /(a3 + abe) (b3 + abe) (3 + abe)  (AM — GM)
= abc+ /(a3 + abe) (b3 + abe) (3 + abe).
O

Problem 32. (Andrei Ciupan) Let a, b, ¢ be positive real numbers such that

1 1 1
> 1.
a+b+1+b+c+1+c+a+1 -

Show that a + b+ ¢ > ab + bc + ca.

20



First Solution. (by Andrei Ciupan) By applying the Cauchy-Schwarz inequality, we obtain
(a+b+1)(a+b+c*) > (a+b+c)?

or
1 A+a+bd

a+b+1" (a+b+c)?

Now by summing cyclically, we obtain

LS S <a2+b2+c2+2(a+b+c)
a+b+1 b+c+1 c+a+1— (a+b+c)?

But from the condition, we can see that
2,32, 2 2
a®+b"+c+2a+b+c)>(a+b+c),

and therefore
a+b+c>ab+ be+ ca.

We see that the equality occurs if and only ifa =b=c=1. O

Second Solution. (by Cezar Lupu) We first observe that

1 a+b (a +b)?
> — S f— _— .
2—Z<1 a+b+1> Za+b+1 Z(a+b)2+a+b

cyclic cyclic cyclic

Apply the Cauchy-Schwarz inequality to get

(a+b)? Ca+b? 43 a*+8Y ab
22 ) (a+b)2+a+b = Sa+b)2+a+b 2> a2+2>ab+2>a

cyclic

or
a+b+c>ab+ be+ ca.

O]

We now illustrate normalization techniques to establish classical theorems. Using the same idea
in the proof of the Cauchy-Schwarz inequality, we find a natural generalization :

Theorem 3.4.2. Let a;j(i,j = 1,--- ,n) be positive real numbers. Then, we have
(an™+---+a") (@™ + -+ apy™) > (a11021 - ap1 + - -+ + Q1020 - -+ Apn)".
Proof. Since the inequality is homogeneous, as in the proof of the theorem 11, we can normalize to

1
n

(ai1n+"‘+ainn) =1 or ai1n+"'+ainn:1 (121,,’0)

Then, the inequality takes the form aj1a01 - an1+- -+ a1paon - apn <1 or Z?Zl a1 < 1.
Hence, it suffices to show that, for all i =1,--- ,n,

1
@it @i < —, where a4+ +ap" = 1.
n

To finish the proof, it remains to show the following homogeneous inequality : O
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Theorem 3.4.3. (AM-GM inequality) Let ai,--- ,a, be positive real numbers. Then, we have
ap+---+ap >

n, ai - Qp.-
n
Proof. Since it’s homogeneous, we may rescale ai,---,a, so that a;---a, = 1. * We want to
show that
a1 -ap=1 = a1+---+a, >n.

The proof is by induction on n. If n = 1, it’s trivial. If n = 2, then we get a; + a2 — 2 =
a1 + az — 2\/ajaz = (y/a1 — az)?> > 0. Now, we assume that it holds for some positive integer
n > 2. And let ay, -+, an4+1 be positive numbers such that a; - - - apa,+1=1. We may assume that
a; > 1> az. (Why?) It follows that ajas+1—a;—a2 = (a1—1)(az—1) < 0so that ajas+1 < aj+as.
Since (ajaz)as - - - an = 1, by the induction hypothesis, we have ajas + ag + -+ - + an41 > n. Hence,
a1 +ax—14+az3+ -+ ant1 > n. ]

The following simple observation is not tricky :

Let a,b > 0 and m,n € N. Take 1 = -+ = xp, = @ and Zypy1 = -+ = Z4,,,, = b.
Applying the AM-GM inequality to x1,- -, Zpyn > 0, we obtain
ma + nb 1 m n m__n_
- Z (ambn)m+n or a + b Z am+n bm+n .
m-+n m+n m-+n
Hence, for all positive rationals wi and wy with wi + wy = 1, we get
w1 a+web>a¥b 2.
We immediately have
Theorem 3.4.4. Let w1, wo > 0 with wy +we = 1. For all x, y > 0, we have
W1 T+ wy > xy“2,
Proof. We can choose a positive rational sequence aq,as,as,--- such that
lim a, = wi.
n—oo
And letting b; = 1 — a;, we get
lim bn = w2.
n—oo
From the previous observation, we have
an T + by y > zyPn
By taking the limits to both sides, we get the result. O

Modifying slightly the above arguments, we see that the AM-GM inequality implies that

Theorem 3.4.5. (Weighted AM-GM inequality) Let wy,- - ,wp, > 0 with w; + -+ + wy, = 1.
For all x1,--- ,x, > 0, we have

w1 14t wn T > @y

4Set ;= —%—+ (i=1,---,n). Then, we get 1 ---z, = 1 and it becomes 1 + - - - + z, > n.
(a1--an)™
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Alternatively, we find that it is a straightforward consequence of the concavity of Inz. Indeed,
the weighted Jensen’s inequality says that In(wy x1 + -+ +wy, @) > wiln(zy) + -+ + wy In(xy,) =
In(xy “1 -2, “m).

Recall that the AM-GM inequality is used to deduce the theorem 18, which is a generalization of
the Cauchy-Schwarz inequality. Since we now get the weighted version of the AM-GM inequality,
we establish weighted version of the Cauchy-Schwarz inequality.

Theorem 3.4.6. (Holder) Let z;; (i = 1,--- ,m,j = 1,---n) be positive real numbers. Suppose

that wy, - -+ ,wy are positive real numbers satisfying wy + -+ + wy, = 1. Then, we have
n m Wy m n
(55 i
j=1 \i=1 i=1 \j=1
Proof. Because of the homogeneity of the inequality, as in the proof of the theorem 12, we may
rescale x1;,- -+ ,Zm; so that x1; + -+ xm; = 1 for each j € {1,--- ,n}. Then, we need to show
that
n m n m n
lej Z ZHZL‘ijwj or 1 Z ZH;Uijwj.
j=1 i=1 j=1 i=1 j=1

The weighted AM-GM inequality provides that

n n m n m n
ijxij > H:Uij“’j (ie{l,---,m}) = Zzwjxij > ZHv’Uz’jwj-
j=1 j=1 i=1 j=1 i=1j=1

However, we immediately have

m n n m n m
) SERES ) IERTES 1 D SEA IS R
j=1 i=1

i=1 j=1 j=1i=1
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Chapter 4

Convexity

Any good idea can be stated in fifty words or less. S. M. Ulam

4.1 Jensen’s Inequality

In the previous chapter, we deduced the weighted AM-GM inequality from the AM-GM inequality.
We use the same idea to study the following functional inequalities.

Proposition 4.1.1. Let f : [a,b] — R be a continuous function. Then, the followings are
equivalent.

(1) For all m € N, the following inequality holds.
wlf(xl)++wnf(xn) Z f(wl X1 ++Wn xn)

forall xy, -+ ,x, € [a,b] and wi, -+ ,wy, >0 with wy + -+ + wy, = 1.
(2) For allm € N, the following inequality holds.

rf(@y) 4 raf(@n) = fri a4+ T 2)

for all xy,--- 2, € [a,b] and r,--+ ;7 € QT withry + -+ + 71, = 1.
(3) For all N € N, the following inequality holds.

fy) +-+ flyn) >f<y1+"'+ yN>
N - N

for all yi,--- ,yn € [a,b].
(4) For all k € {0,1,2,---}, the following inequality holds.

f(y1)+'2'l;+f(yzk) > f <y1+"2'k+ yzk)

fO?” all yp, -+ » Yok € [a'ab]'
(5) We have 3 f(z) + 3 f(y) > f (552) for all z,y € [a,b].
(6) We have Af(z)+ (1 —=X)f(y) > f (Az+ (1 — N)y) for all x,y € [a,b] and X € (0,1).

Proof. (1) = (2) = (3) = (4) = (5) is obvious.
(2) = (1) : Let x1,--- ,xp € [a,b] and wq,- -+ ,wp > 0 with w1 + - -+ + w, = 1. One may see that
there exist positive rational sequences {ri(1)}xen, -, {rk(n)}ren satisfying

lim 74(j) =w; (1<j<n) and rg(l)+---+ri(n) =1 for all ke N.

k—oo
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By the hypothesis in (2), we obtain ri(1)f(z1) + -+ + rg(n) f(zn) > f(re(1) z1 4+ -+ + ri(n) ).
Since f is continuous, taking k — oo to both sides yields the inequality

wif(xy) + - +wnf(zy) > flwr 214+ -+ +wp zp).

(3) = (2) : Let @1, -+ ,xy € [a,b] and 71,--+ , 7, € QT with 71 +---+ 17, = 1. We can find a
positive integer N € N so that Nry, ---, N, € N. For each i € {1,--- ,n}, we can write r; = &,

where p; € N. It follows

(4) = (3) : Let yp,---

(4) implies that

so that

Fn) -+ flun) = Nf(a) = Nf (

from 7y + -+ +r, =1 that N =p; + -+ + p,. Then, (3) implies that

rif(z1) + -+ raf(r,)

p1 terms Dn, terms
_ )+ A fe) e F ) £+ ()
N
p1 terms Prn, terms

——— ——f—
T e
N

v

f

= f(T1$1+"'+Tn$n).
,yn € [a,b]. Take a large k € N so that 2¥ > N. Let a = “FFUN . Then,

Flp) + -+ flyn) + (28 —n) f(a)
2k

(2% — N) terms
fly) + -+ flyn) + fla) + -+ f(a)
2k
(2% — N) terms

——~—
Y1+ tyv+ at--+a
ok

Y

f

= f(a)

Y1+t yn
~ :

(5) = (4) : We use induction on k. In case k = 0, 1,2, it clearly holds. Suppose that (4) holds for
some k > 2. Let y1,- -+ ,ysrt1 € [a,b]. By the induction hypothesis, we obtain

v

v

fQ) + -+ fyar) + f(yargr) + o+ fygern)
Qkf(y1++ ygk)+2kf(y2k+1++ y2k+1>

2k 2k
+t y +-+y
2k+1f<y1 2 y2k) +f< = 2k 2“1)
2
Y1+t Yok Yok 11Tt Ygk+1
2k3+1f P + 2k
2
kale (Y1 1+ -+ Yorn
2 f( 2k+1 > '
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Hence, (4) holds for k + 1. This completes the induction.
So far, we’ve established that (1), (2), (3), (4), (5) are all equivalent. Since (1) = (6) = (5) is
obvious, this completes the proof. ]

Definition 4.1.1. A real valued function f is said to be convezr on |a,b] if

AM@)+ @ =Nf(y) = fAz+ (1= N)y)
for all z,y € [a,b] and X € (0,1).
The above proposition says that

Corollary 4.1.1. (Jensen’s inequality) Let f : [a,b] — R be a continuous convex function. For
all z1,- -+ ,xy, € [a,b], we have

o oot o), (),

n n

Corollary 4.1.2. (Weighted Jensen’s inequality) Let f : [a,b] — R be a continuous convez
function. Let wy,--- ,wy, >0 withwy + -+ +wy = 1. For all 1, -+ ,zy, € [a,b], we have

wif(z) + -+ wnf(zy) > flwr 214+ +wy @p).

In fact, we can almost drop the continuity of f. As an exercise, show that every convex function
on [a,b] is continuous on (a,b). So, every convex function on R is continuous on R. By the
proposition again, we get

Corollary 4.1.3. (Convexity Criterion I) Let f : [a,b] — R be a continuous function. Suppose
that
f@) + 1) s ($+y>

2 2

for all x,y € [a,b]. Then, f is a convex function on [a,b).

Exercise 20. (Convexity Criterion II) Let f : [a,b] — R be a continuous function which are
differentiable twice in (a,b). Show that the followings are equivalent.

(1) f"(x) >0 for all x € (a,b).
(2) f is convex on (a,b).

When we deduce (5) = (4) = (3) = (2) in the proposition, we didn’t use the continuity of f :

Corollary 4.1.4. Let f : [a,b] — R be a function. Suppose that

Mo S0, (220

for all z,y € [a,b]. Then, we have
rif(xy) + - Fraf(en) > frior+ -+ rp 2p)
for all xy,--+ ,xy, € [a,b] and r1,--+ ;7 € QT withry + -+ -+ 1, = 1.

We close this section by presenting an well-known inductive proof of the weighted Jensen’s
inequality. It turns out that we can completely drop the continuity of f.
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Second Proof. 1t clearly holds for n = 1,2. We now assume that it holds for some n € N. Let
T, T, Tt € [a,bland wy, -+ wppr > 0 with wi+- - +wpyp = 1. Since =2b—+ - =22 — =
1, it follows from the induction hypothesis that

Y

A\

1—wni1 Wn41

wif(wy) + -+ wngr f(Tny1)

w1 W
(1) (T2 o) oo =2 ) ) i i)
n n
w1 W,
(1 - wn+1)f (1_0-)—1-13:1 —+ -+ 1_:;4_11‘71) + WnJrlf(anrl)
n n
w w
fll—=wnt1) 71561 oot — 2|+ Wng1Tngt
1 —wni1 1 —wpt1

f(w11’1 + -+ wn+1$n+1)‘
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4.2 Power Means

Convexity is one of the most important concepts in analysis. Jensen’s inequality is the most
powerful tool in theory of inequalities. In this section, we shall establish the Power Mean inequality
by applying Jensen’s inequality in two ways. We begin with two simple lemmas.

Lemma 4.2.1. Let a, b, and ¢ be positive real numbers. Let us define a function f: R — R by

o) =m (TEEED),

where x € R. Then, we obtain f'(0) = In (abc)%.

1
Proof. We compute f'(z) = ¢~ ‘thbi?fy““ e Then, f/(0) = matlnbtne — 1y (gbe)s3. O

Lemma 4.2.2. Let f : R — R be a continuous function. Suppose that f is monotone increasing
on (0,00) and monotone increasing on (—oo,0). Then, f is monotone increasing on R.

Proof. We first show that f is monotone increasing on [0,00). By the hypothesis, it remains to
show that f(x) > f(0) for all z > 0. For all € € (0, ), we have f(x) > f(e). Since f is continuous
at 0, we obtain

f(z) = lim f(€) = f(0).

e—0t

Similarly, we find that f is monotone increasing on (—o00,0]. We now show that f is monotone
increasing on R. Let x and y be real numbers with > y. We want to show that f(z) > f(y).
In case 0 € (z,y), we get the result by the hypothesis. In case x > 0 > y, it follows that

f(x) =2 f(0) = f(y). =

Theorem 4.2.1. (Power Mean inequality for three variables ) Let a, b, and ¢ be positive
real numbers. We define a function M pc) : R — R by

a’f‘ _|__b’f' +CT
M(a,b,c) (O> = 3‘/ abe, M(a,b,c) (7’) - (

1

r #0).
) w20
Then, M p,c) 1s a monotone increasing continuous function.

First Proof. Write M(r) = M, ) (r). We first establish that M is continuous. Since M is contin-
uous at r for all » # 0, it’s enough to show that

liH(l) M(r) = Vabe.
r—
Let f(z) = In (245+<), where z € R. Since f(0) = 0, the lemma 2 implies that

lim L) _ iy L) = SO £/(0) = In Vabe.

r—0 7r r—0 r—=0

Since e* is a continuous function, this means that

(r
lim M (r) = lim el = ln Vabe _ Vabe.

r—0 r—0

Now, we show that M is monotone increasing. By the lemma 3, it will be enough to establish that
M is monotone increasing on (0, 00) and monotone increasing on (—oo,0). We first show that M
is monotone increasing on (0,00). Let x >y > 0. We want to show that

(a$+bf+c$>i - (ay+by+cy)3/
3 - 3 '
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After the substitution u = a¥, v = a¥, w = a*, it becomes

1
uy +vv +wy z> u+v+w v
3 - 3 ’

Since it is homogeneous, we may normalize to u + v + w = 3. We are now required to show that

G(u) + G(v) + G(w)
3

> 1,

where G(t) = tv, where t > 0. Since 3 = 1, we find that G is convex. Jensen’s inequality shows
that

G(u) + G;v) +GW) | 4 (W) = G(1)=1.

Similarly, we may deduce that M is monotone increasing on (—o0,0). O

We've learned that the convexity of f(x) = # (X > 1) implies the monotonicity of the power
means. Now, we shall show that the convexity of xlnx also implies the power mean inequality.

Second Proof of the Monotonicity. Write f(z) = M) (7). We use the increasing function the-
orem. By the lemma 3, it’s enough to show that f/(x) > 0 for all z # 0. Let x € R — {0}. We
compute

d 1 a® + b 4 ¢* 1 i (a®lna+b"Inb+ c®Inc)
=— =——h|————— ) +=-3
Ty~ o0 =i (T )+ L

or

22 f'(z) | a® 4+ b* + c* +axlnax+bxlnb‘”+cxlncx
—_— = — N .
f(x) 3 a® + b + ¢c*
To establish f’(z) > 0, we now need to establish that
€T bw X
a®Ina® +b"Ind” + Inc® > (a® +0° + ") In (a—i—3—i—c> .

Let us introduce a function f : (0,00) — R by f(¢) = tlnt, where ¢ > 0. After the substitution
p=a®, q=a¥, r = a?, it becomes

3

fo)+ fla) + f(r) > 3f <W> .

Since f is convex on (0,00), it follows immediately from Jensen’s inequality. O
As a corollary, we obtain the RMS-AM-GM-HM inequality for three variables.
Corollary 4.2.1. For all positive real numbers a, b, and c, we have

2 12 4 2
la —H; +c Za—kg—kcz 3/7abCZT

-
T

= QO

Proof. The Power Mean inequality states that Mg y(2) > Mg pc)(1) = Mg p,)(0) > Mg p o) (—1).
O

Using the convexity of zlnz or the convexity of 2* (A > 1), we can also establish the mono-
tonicity of the power means for n positive real numbers.
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Theorem 4.2.2. (Power Mean inequality) Let xy,--- ,x, > 0. The power mean of order r is
defined by

1
:L‘r + [ _|_ xnr s
M(ml""fzn)(o) = nV L1 Tn, M(xlv"'yxn)(’r) - <1> (T ?é O)

n
Then, Mz, ... z,) : R — R is continuous and monotone increasing.

We conclude that

Corollary 4.2.2. (Geometric Mean as a Limit) Let x1,--- ,x, > 0. Then,

1

X xlr+...+xnr r

nﬂ?l"‘xn:hm e .
r—0 n

Theorem 4.2.3. (RMS-AM-GM-HM inequality) For all zy,--- ,x, > 0, we have

2 2
"E “ e x x DY x n
\/1+ tand  md O

n n T
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4.3 Majorization Inequality

We say that a vector x = (1, -, z,) majorizes another vector y = (y1,- - ,yn) if

(D z1> 22,91 >+ > Yy,
2)x1+- x>y +- -ty forall 1l <k <n-—1,
@B)zr+-tap=y1+ -+ yn

Theorem 4.3.1. (Majorization Inequality) Let f : [a,b] — R be a convex function. Suppose
that (x1, -+ ,xy) majorizes (Y1, ,Yn), where x1, -, Tp, Y1, ,Yn € [a,b]. Then, we obtain

fl) -+ flan) = fly1) + -+ fyn)-

For example, we can minimize cos A + cos B + cos C, where ABC' is an acute triangle. Recall
that —cosx is convex on (O, %) Since (%, g,O) majorize (A, B,C), the majorization inequality
implies that

cos A + cos B + cos C' > cos <%) +Cos< ) +cos0 = 1.

2
Also, in a triangle ABC, the convexity of tan? (%) on [0, 7] and the majorization inequality show
that

A B
21—12v/3 = 3tan? (%) < tan? <4> +tan? <4> +tan? <Z> < tan? (%) +tan20+tan 20 = 1.

(IMO 1999/2) Let n be an integer with n > 2.

Determine the least constant C' such that the inequality

Z zix(x? +x)<C’ Z T

1<i<j<n 1<i<n

holds for all real numbers z1,--- ,z, > 0.

Second Solution. (Kin Y. Li') As in the first solution, after normalizing z1 + --- + x, = 1, we

maximize
E x4 ( x +;1? E f (),

1<i<j<n

where f(z) = 23 — 2% is a convex function on [0, 3]. Since the inequality is symmetric, we can
restrict our attention to the case z1 > z9 > --- > x,,. If % > x1, then we see that (%, é,O 0)
majorizes (21, ,2,). Hence, the convexity of f on [0, 3] and the Majorization inequality show

that
1

gf(xi)ﬁf(;>+f<;)+f(0)+~--+f(0):8

We now consider the case when % > x1. Write 21 = % — ¢ for some € € [0, %] We find that
(1 —21,0,---0) majorizes (z2,--- ,x,). By the Majorization inequality, we find that

Zf ) < f(L=21)+ f(0) + -+ f(0) = f(1—a1)

'T slightly modified his solution in [K'YL].
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so that

> 1(e0) < flanf (1 o0) = a1+ (-0 =

62
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4.4 Supporting Line Inequality

There is a simple way to find new bounds for given differentiable functions. We begin to show that
every supporting lines are tangent lines in the following sense.

Proposition 4.4.1. (Characterization of Supporting Lines) Let f be a real valued function.
Let m,n € R. Suppose that

(1) f(a) = ma+n for some a € R,
(2) f(z) > mz +n for all x in some interval (€1, €2) including o, and

(3) f is differentiable at c.

Then, the supporting line y = mx +n of f is the tangent line of f at r = «.

Proof. Let us define a function F' : (e1,e2) — R by F(z) = f(x) — maz — n for all z € (€1, €2).
Then, F is differentiable at o and we obtain F’'(«) = f'(a) — m. By the assumption (1) and (2),
we see that F' has a local minimum at «. So, the first derivative theorem for local extreme values
implies that 0 = F'(a) = f'(a) — m so that m = f’(«) and that n = f(a) — ma = f(a) — f(a)a.
It follows that y = mz +n = f'(a)(z — a) + f(«). O

(Nesbitt, 1903) For all positive real numbers a, b, ¢, we have
a n b n c_ S 3
b+c c+a a+b 2

Proof 13. We may normalize to a +b+ ¢ = 1. Note that 0 < a,b,c < 1. The problem is now to
prove

> fa) zg - f(a)+féb)+f(c) . (;) where £(z) =

X

1—za

The equation of the tangent line of f at x = % s given by y = %. We claim that f(x) > 9554—_1
for all x € (0,1). It follows from the identity
9z -1  (3z —1)?
J@) === =g

Now, we conclude that

a 9a — 1 9 3 3
2Tz T TiX% 1%

cyclic cyclic cyclic

The above argument can be generalized. If a function f has a supporting line at some point on
the graph of f, then f satisfies Jensen’s inequality in the following sense.

Theorem 4.4.1. (Supporting Line Inequality) Let f : [a,b] — R be a function. Suppose that
a € [a,b] and m € R satisfy
f(x) =m(z — ) + f(a)
for all x € [a,b]. Let wy,- - ,wy >0 withwy + -+ +wy, = 1. Then, the following inequality holds
Wlf(xl) + an(wn) > f(a>

for all xy,--- ,xy, € [a,b] such that o = wix1 + -+ + wpxy. In particular, we obtain

f@1) + -+ f(zn) > f<§>’

n

where x1,- -+ , &y € |a,b] with x1 + -+ x, = s for some s € [na,nb].
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Proof. Tt follows that wy f(z1) 4+ - - +wp f(xn) > wim(z1—a)+ f(a)]+- - +wi[m(z, —a)+ f(a)] =
fla). O

We can apply the supporting line inequality to deduce Jensen’s inequality for differentiable
functions.

Lemma 4.4.1. Let f : (a,b) — R be a convez function which is differentiable twice on (a,b). Let
y = lo(x) be the tangent line at « € (a,b). Then, f(x) > lo(x) for all x € (a,b).

Proof. Let « € (a,b). We want to show that the tangent line y = I, (z) = f'(a)(z — a) + f(«) is
the supporting line of f at © = « such that f(xz) > l,(x) for all z € (a,b). However, by Taylor’s
theorem, we can find a 6, between o and x such that

/(6
1) = £(0) + f@)a— ) + 70 (0~ a)? > fa) + f(a)(o — o).
O
(Weighted Jensen’s inequality) Let f : [a,b] — R be a continuous convex function
which is differentiable twice on (a,b). Let wy, -+ ,w, > 0 with wq + -+ 4+ w, = 1. For
all z1,--- , 2, € [a,b],

wif(@1) + - Fwnf(@n) > flwr @1+ -+ wy T).

Third Proof. By the continuity of f, we may assume that xi,---,z, € (a,b). Now, let p =
wi &1 + -+ +wy Ty Then, p € (a,b). By the above lemma, f has the tangent line y = [,(z) =
f(p)(x — p) + f(p) at @ = p satisfying f(x) > 1, (x) for all x € (a,b). Hence, the supporting line
inequality shows that

wif(zr) + -t wnf(@n) > wif(p) + - +wnf(p) = f(p) = flwr 21+ +wn o).
]

We note that the cosine function is concave on [O, g} and convex on [g, 77] . Non-convex functions
can be locally convex and have supporting lines at some points. This means that the supporting line
inequality is a powerful tool because we can also produce Jensen-type inequalities for non-convex

functions.
(Theorem 6) In any triangle ABC, we have cos A + cos B 4 cos C' < %

Third Proof. Let f(x) = —cosx. Our goal is to establish a three-variables inequality

f(A) + f(B) + f(C) T
3 2 f(ﬁ)’

where A, B,C € (0,7) with A+ B+ C = w. We compute f'(z) = sinxz. The equation of the

tangent line of f at x = % is given by y = § (x — g) — % To apply the supporting line inequality,
we need to show that

_ V3 ( W) 1
—cosr > — (x— =) —=
-2 3 2
for all € (0,7). This is a one-variable inequality! We omit the proof. O
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Problem 33. (Japan 1997) Let a, b, and ¢ be positive real numbers. Prove that

(b+c—a)?  (c+a—0b?% (a+b—c)?
(b+c¢)?2+a®> (c+a)2+b> (a+b)?+c2

>3,
~—5
Proof. Because of the homogeneity of the inequality, we may normalize to a + b+ ¢ = 1. It takes
the form

(1 — 2a)? (1 — 2b)* (1 —2c)? 3 1 1 1 27

> - & < —.
(I—a)?+a®> (1-0)2+0> (1—c¢)2+c2 "5 2a2—2a—|—1+2b2—2b+1+202—2c—|—1_ 5

We find that the equation of the tangent line of f(x)
and that

- 1 B — %4 27
= 3379577 at ¢ = 3 is given by y = 5z + 5¢

54 27\ 2(3z—1)*(6z +1)
r@)- (ot 3) <0.

T 25(202 — 22 +1)
for all x > 0. It follows that

54 27 27

cyclic cyclic
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Chapter 5

Problems, Problems, Problems

Each problem that I solved became a rule, which served afterwards to solve other problems. Rene Descartes

5.1 Multivariable Inequalities

M 1. (IMO short-list 2003) Let (x1, 22, ,x,) and (y1,y2, - ,Yn) be two sequences of positive
real numbers. Suppose that (z1, 22, ,2n) 1S a sequence of positive real numbers such that

2
Zitj" 2 TiY;

forall1 <i,j <n. Let M = max{za, - ,z2,}. Prove that

Mt zpt-tom\* (ot (it tyn
2n - n n ’

M 2. (Bosnia and Herzegovina 2002) Let aj, - ,an, b1, -+ ,bp,c1,- - , ¢y be positive real num-
bers. Prove the following inequality :

M 3. (C'2113, Marcin E. Kuczma) Prove that inequality

1Y
2w biz) aitb)) LT
=1 =1 =1 =1
for any positive real numbers ay, -+ ,an, b1, , by

M 4. (Yogoslavia 1998) Let n > 1 be a positive integer and ay,- - ,ap, b1, -+ , by, be positive real
numbers. Prove the following inequality.

2
Z aibj > Z ;G Z bibj.

i#] i#] G

LCRUX with MAYHEM
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M 5. (C2176, Sefket Arslanagic) Prove that

3=

3=
—~

j=p
=

S
S
~—

3=

((a1+b1) - (an +by))n > (a1 ay)

where ay, -+ ,0n, b1, - by, >0

M 6. (Korea 2001) Let x1,--- ,xy and y1,--- ,yn be real numbers satisfying
i+t =yt eyt =1

Show that

2 > (21y2 — Toy1)?

n
1= i
=1

and determine when equality holds.

M 7. (Singapore 2001) Letay,--- ,an, b1, -+ , by be real numbers between 1001 and 2002 inclusive.
Suppose that

n n
Sar=3on
i=1 =1
Prove that " "
3
a; 17 9
R
b S 102"
i=1 =1
Determine when equality holds.
M 8. (Abel’s inequality) Let aj,--- ,an,x1, - ,xzN be real numbers with x, > xn411 > 0 for all
n. Show that
la1z1 + - -+ ayen| < Axy
where

A = maw{|a1‘7 |CL1 +CL2’,“ ' 7|a1 + - +CLN|}

M 9. (China 1992) For every integer n > 2 find the smallest positive number A\ = A(n) such that
if

OSa17"'7aTLS ) b17"'7bn>07 a1++an:b1++bn:1

N =

then
bl“'bn < )\(albl + - +anbn)

M 10. (C2551, Panos E. Tsaoussoglou) Suppose that ay,--- ,ay, are positive real numbers. Let
ejk =n—11ifj =k and e}, = n—2 otherwise. Let d;;, =0 if j =k and d; = 1 otherwise. Prove
that

n

n n n 2
S T ewmae® =TT (D djnan
1 \k=1

j=1k=1 j=

M 11. (C2627, Walther Janous) Let x1,--- ,x,(n > 2) be positive real numbers and let x1 +

<-4 axn. Letay,- -, ay be non-negative real numbers. Determine the optimum constant C(n) such
that
1
n aj(sn — .%'j) > C( ) f[ n
E - n s
, Zj o L1
J=1 J=1
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M 12. (Hungary-Israel Binational Mathematical Competition 2000) Suppose that k and
[ are two given positive integers and a;;(1 < i < k,1 < j <) are given positive numbers. Prove
that if ¢ > p > 0, then

g\ % B\
! k AN k l a\”
(o) ] < (3o
j=1 \i=1 i=1 \j=1
M 13. (Kantorovich inequality) Suppose 1 < --- < x, are given positive numbers. Let

M, 3 A >0 and \y + -+ N\, = 1. Prove that

n n )\l A2
(Ew) (£3)=5

where A = MT‘T” and G = \/T12,.
M 14. (Czech-Slovak-Polish Match 2001) Let n > 2 be an integer. Show that

(ar®> + 1) (a2 +1) - (a,® + 1) > (a1%az + 1)(ag%az + 1) - - - (an’a; + 1)
for all nonnegative reals ay,--- ,ay.
M 15. (C1868, De-jun Zhao) Let n >3, a; > ag > --- > a, >0, and p > q > 0. Show that

arPaz? + aglaz? + - + an—1Pan? + apar? > a1%a9” + az?az” + - + an—19a,’ + apfar”
M 16. (Baltic Way 1996) For which positive real numbers a,b does the inequality
L1292 + T3 + A Tpo1Tn + 21 > 21702 03" + 2030w 4 -+ 2 %2y Py

holds for all integers n > 2 and positive real numbers x1,--- ,Ty.

M 17. (IMO short List 2000) Let xy, o, - ,xy be arbitrary real numbers. Prove the inequality

T 9 T,
< .
1+.’IJ12+1+$12+$22+ +1+$12+"'+$n2 \/ﬁ

M 18. (MM?1479, Donald E. Knuth) Let M, be the mazimum value of the quantity

In + Z2 + + I
I+z+--+wp)2 (I+zo+-+1,)2 (1+ x,)?
over all nonnegative real numbers (x1,--- ,x,). At what point(s) does the mazimum occur ? FExpress

M, in terms of My_1, and find lim,_,oo M,.

M 19. (IMO 1971) Prove the following assertion is true for n =3 and n =5 and false for every

other natural number n > 2 : if a1, ,a, are arbitrary real numbers, then
n
ZH(CLZ - aj) Z 0.
i=1 i#j

2Mathematics Magazine
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M 20. (IMO 2003) Let 1 < z2 < --- < x,, be real numbers.

(a) Prove that
2

n? —
> wi— §2(31) > (i — )

1<4,j<n 1<i,j<n
(b) Show that the equality holds if and only if x1,z2,- - ,xy, is an arithmetic sequence.

M 21. (Bulgaria 1995) Letn >2 and 0 < z1,--- ,x,, < 1. Show that

n
(x1+$2+"'+$n)—(x1x2+132x3+"'+.73n(l}1)§ [5},

and determine when there is equality.

M 22. (MM1407, M. S. Klamkin) Determine the maximum value of the sum

1P +xof + -+ ayf — ey — wolas” — - xy "
where p,q,r are given numbers withp > qg>r >0 and 0 < x; <1 for all 7.
M 23. (IMO Short List 1998) Let a1, aq,- - ,ay be positive real numbers such that

ap+az+---+ap <1
Prove that
arag---ap(l — (a1 +az + - +ay)) PR
(ap +as+-+ap)(l—a))(1—az) - (1 —a,) — n*tl’

M 24. (IMO Short List 1998) Let ri,ro,--- ,ry be real numbers greater than or equal to 1.
Prove that

1 1 n
>

r1+1 rp+1 (7“1”'7%)%4-1

M 25. (Baltic Way 1991) Prove that, for any real numbers ay,-- - , ay,
> >0
1igen ' T
M 26. (India 1995) Let x1, 2, -,y be positive real numbers whose sum is 1. Prove that

T Tn n

1—w1+“'+1—xn_ n—1
M 27. (Turkey 1997) Given an integer n > 2, Find the minimal value of
7 . o7 L 7
ro+x3+--+xy x3+--F+xTn+1T1 r1t+ T3+ -+ Xp-1

for positive real numbers x1,--- ,x, subject to the condition z1% + --- 4+ x,% = 1.

M 28. (China 1996) Suppose n € N, 29 =0, x1,-+- ,x, > 0, and x1 + - - - + x, = 1. Prove that

L

n
Y
1< T
_;\/1+xo+---+mi1\/$¢+--'+$n 2
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M 29. (Vietnam 1998) Let xy,- - -
1

, T, be positive real numbers satisfying

1 1

o+ 1008 T

Prove that

)

n —

M 30. (C2768 Mohammed Aassila) Let x1,- - -

T T3
2 + 2
V179 + T2 VToxs + T3

M 31. (C2842, George Tsintsifas) Let xy, - - -

T, +1998

1998°

> 1998

, Tn be n positive real numbers. Prove that

€T n
n S

+ YV
Vpxy + 212 V2

, T, be positive real numbers. Prove that

1
@ Tl
nTy---Tn 1+ -+ ap
1
o) "+ " (xl--urnﬁ > 1
Iy Tn r1+---+x
M 32. (C2423, Walther Janous) Let x1,--- ,x,(n > 2) be positive real numbers such that
1+ -+ x, = 1. Prove that

(o3) 02

Determine the cases of equality.

M 33. (C1851, Walther Janous) Let z1,--- ,

n—x n— Tp

(=)~ (=)

1—a 1—x,

zn(n > 2) be positive real numbers such that

2l =1
Prove that
2\/5—1 24 x; 2f+1
5f—1_ — 5+xl 5\f+1

M 34. (C1429, D. S. Mitirinovic, J. E. Pecaric) Show that

n

D

=1

T

where x1,- -+ , T, aren > 3 positive real numbers.

M 35. (Belarus 1998 S. Sobolevski) Let a; < as <

the inequalities

Ti% + Tip1Tig2

<n-—1

Of course, Tpi1 = X1, Tnia = 2. 3

- < ay be positive real numbers. Prove

n ap ap+---+ap
(a) 1 2;' n ’
a+' "Fa n
n 2k ar+---+ay
(b) 1 - 2 9
L4 4 1+k n
al n
where k = 42,
ay
PN, . P .
Original version is to show that sup L =n-—1.

i=1 22t 1@igo
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M 36. (Hong Kong 2000) Let a; < as < --- < ay, be n real numbers such that
a1 +ax+---+a, =0.

Show that
a12+a22+---—|—an2—|—na1an <O0.

M 37. (Poland 2001) Let n > 2 be an integer. Show that

n

ifﬂii + <Z> > Zmz
i=1

i=1
for all nonnegative reals x1, - , xTy.
M 38. (Korea 1997) Let ay,--- ,a, be positive numbers, and define

Mt o gy ) E H = n

A= —

(a) If n is even, show that

(b) If n is odd, show that

A n—2 2(n-—1) (A\"
Z<- + =) .
H ~ n n G

M 39. (Romania 1996) Let x1,- -+ , Ty, Tnt1 be positive reals such that
Tp+1 =T1 + -+ T

Prove that

n

Z \/xi(xn—i—l —x;) < \/$n+1(90n+1 — ;)

i=1

M 40. (C2730, Peter Y. Woo) Let AM(z1,--- ,xy) and GM(x1,--- ,x,) denote the arithmetic
mean and the geometric mean of the positive real numbers x1,--- ,x, respectively. Given positive
real numbers ay,- - ,an,b1, -+ , by, (a) prove that

GM (a1 + b1, -+ ,an+by) > GM(ar, - ,an) + GM (b1, - ,by).
For each real number t > 0, define
f(t)=GM(t+bi,t +ba,--- ,t+b,)—t
(b) Prove that f is a monotonic increasing function, and that
tlir})lof(t) =AM (by,--- ,by)

M 41. (C1578, O. Johnson, C. S. Goodlad) For each fized positive real number a,,, maximize

aiag - - ay
(14+a1)(ar + ag)(az +ag) - (an—1+ap)

over all positive real numbers ai, -+ ,ap_1.
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M 42. (C1630, Isao Ashiba) Mazimize
aiaz + agaq + -+ + agp—102n

over all permutations ay,--- ,as, of the set {1,2,---  2n}

M 43. (C1662, M. S. Klamkin) Prove that

x12r+1 x22r+1 xn2r+1 47

2 1T ToX 1)
s—x1+5_$2+ s—xn_(n—l)n27*1(12+ 93 4+ TpTy)

where n > 3, r > %, x; >0 for all i, and s = x1 + -+ - + xp. Also, Find some values of n and r
such that the inequality is sharp.

M 44. (C1674, M. S. Klamkin) Given positive real numbers r,s and an integer n > =, find
positive real numbers x1,- - , T, S0 as to minimize

1 1 1
(xﬁ“ ot M’) (I+z1)°(1+22)° - (L+z0)"

M 45. (C1691, Walther Janous) Let n > 2. Determine the best upper bound of

I T2 Tn

+ ot
Tox3-Tp+1  x1X3-xn+1 1T Tp-1 + 1
over all xy,--- ,x, € [0,1].

M 46. (C1892, Marcin E. Kuczma) Let n > 4 be an integer. Find the exact upper and lower

bounds for the cyclic sum
n

> e
5 Ti-1 T T+ Tip

over all n-tuples of nonnegative numbers x1,--- ,x, such that x;—1 + x; + ;41 > 0 for all i. Of
COUTSE, Tpi1 = T1, To = Tyn. Characterize all cases in which either one of these bounds is attained.

M 47. (C1953, M. S. Klamkin) Determine a necessary and sucient condition on real constants
1, ,Tn Such that
1% + 30”4+ w2 > (rixzy +rome + -+ + rnzn)2

holds for all real numbers x1,--- ,Ty.

M 48. (C2018, Marcin E. Kuczma) How many permutations (x1,--+ ,x,) of {1,2,--- ,n} are
there such that the cyclic sum

|21 — @a| + |2 — @3] + -+ [Ta1 — Tp| + |20 — 21|
is (a) a minimum, (b) a maximum ?

M 49. (C2214, Walther Janous) Let n > 2 be a natural number. Show that there exists a
constant C = C(n) such that for all x1,--+ ,xz, > 0 we have

[[@i+0)

i=1

n
I
=1

Determine the minimum C(n) for some values of n. (For example, C(2) =1.)
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M 50. (C2615, M. S. Klamkin) Suppose that x1,--- ,x, are non-negative numbers such that

> _ait ) (wizien)? = n(n; D

where e the sums here and subsequently are symmetric over the subscripts {1,--- ,n}. (a) Determine

the mazimum of Y x;. (b) Prove or disprove that the minimum of Y x; is w .

M 51. (Turkey 1996) Given real numbers 0 = x1 < x93 < -+ < Zop, Topt1 = 1 with x4 —x; < h
for 1 <1 < n, show that

1—h
O < T2i(T2i41 — T2i—1) <
i=1

1+h
—

M 52. (Poland 2002) Prove that for every integer n > 3 and every sequence of positive numbers
T1, -, Ty at least one of the two inequalities is satsified :
n

xX; n
zz: i : i 5 sz 1+xz2

-1 Tit1 + Tit2

1\9\3

Here, Tpy1 = T1, Tpy2 = T2,T0 = Tp, T—1 = Tp—1.

M 53. (China 1997) Let x1,- - ,x1997 be real numbers satisfying the following conditions:

< a1, 21997 < \/§7$1+~‘+$1997= —318V3

\f

Determine the mazimum value of x1'2 + - - - + z1997"2

M 54. (C2673, George Baloglou) Let n > 1 be an integer. (a) Show that

(1+ar-—an)">a1-an(14+a™ %) (14+a1"?)

forall ay,--- ,a, € [1,00) if and only if n > 4.
(b) Show that
1 n 1 n n 1 S n
a1(1 —|—a2"—2) a2(1 +a3"—2) an(1+a1”_2) “14a1--ap
forall ay,--- ,ay, >0 if and only if n < 3.
(¢) Show that
1 1 1 n

>
a1 (14 a"2) + as(1 4+ ag"2) an(l4+a,"2) ~ 1+a---ay
forall ay,--- ,ay, >0 if and only if n < 8.
M 55. (C2557, Gord Sinnamon,Hans Heinig) (a) Show that for all positive sequences {x;}

2

199 INER 31 ) 183

k=1 j=1 i=1

(b) Does the above inequality remain true without the factor 2?2 (c) What is the minimum constant
¢ that can replace the factor 2 in the above inequality?
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M 56. (C1472, Walther Janous) For each integer n > 2, Find the largest constant Cy, such that
n
Co lail < Y lai — aj
i=1 1<i<j<n
for all real numbers ay,--- ,an satisfying Y -y a; = 0.

M 57. (China 2002) Given c € (%, 1). Find the smallest constant M such that, for any integer
n > 2 and real numbers 1 < a; < as < --- < ap, if

1 n n
LY <3
k=1 k=1
then
n m
S < 11
k=1 k=1
where m is the largest integer not greater than cn.
M 58. (Serbia 1998) Let z1, 22, -,y be positive numbers such that

1 +xe+ -ty =1

Prove the inequality
Ty —2T1 2

>

Tr1—T2 To—T3

a
T1+2x2 T2+ T3 '”l‘n+$1
holds true for every positive real number a. Determine also when the equality holds.

a a

n
92 )

M 59. (MM1488, Heinz-Jurgen Seiffert) Let n be a positive integer. Show that if 0 < z1 <
x9 < Xy, then

n

H(l—kxi) ZH; >2"(n+1)

i=1 §=0 k=1
with equality if and only if x1 =--- =z, = 1.
M 60. (Leningrad Mathematical Olympiads 1968) Let ay,as, - ,a, be real numbers. Let

M = max S and m = min S. Show that

2
(=DM =—m)< Y i —aj < T (M —m)

1<i,j<n

M 61. (Leningrad Mathematical Olympiads 1973) Establish the following inequality

8
. T T 1
;TCOS (W) (1—008(2i+2>) < 3

M 62. (Leningrad Mathematical Olympiads 2000) Show that, for all0 < x1 < xo < ... < Xy,

n
Tr1x2 T2X3 Ty X1 TnTi
+ +---+7+722 T;
€T3 T4 €2 x2 —1
1=

M 63. (Mongolia 1996) Show that, for all0 < a1 < ag < ... < ay,
a1 + ag as + as an + aq < a1+ ag + as as + as + ay an + a1 + a2
2 2 2 - 3 3 3 '
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5.2 Problems for Putnam Seminar

P1. ’Putnam 04A6‘ Suppose that f(x,y) is a continuous real-valued function on the unit square

0<x<1,0<y<1. Show that
1 1 2
dy+/ </ f(:v,y)dy> dx
0 0

[ ([ rene'e
<([ [ swnazas) + [ [y wa

P 2. |Putnam 04B2‘ Let m and n be positive integers. Show that

2

(m +n)! m! n!
(m +mn)mtn = mmpn’

P 3. ’Putnam 03A2 ‘ Let ay,ao,...,ay and by, bo, ..., b, be nonnegative real numbers. Show that

(arag - an)"™ 4 (biby - - b)Y < [(a1 + b1)(ag + b2) - - - (an + bp)]V/™

P 4. ’Putnam 03A3‘ Find the minimum value of

|sinx + cosx + tanz + cot x + sec x + csc z|

for real numbers x.

P 5. ’Putnam O3A4‘ Suppose that a,b,c, A, B,C are real numbers, a # 0 and A # 0, such that

laxz? + bz + ¢| < |A2z® + Bz + C|
for all real numbers x. Show that

b? — 4ac| < |B* — 4AC)|.

P 6. ’Putnam O3B6‘ Let f(x) be a continuous real-valued function defined on the interval [0, 1].
Show that

/01 /01 |f(x) 4+ f(y)|dxdy > /01 |f(2)] dz.

P 7. [Putnam 02B3| Show that, for all integers n > 1,

1 1 ( 1 ) " 1
— <= (1=-=) <—.
2ne e n ne
P 8. ’Putnam 01A6‘ Can an arc of a parabola inside a circle of radius 1 have a length greater
than 47

P 9. ’Putnam 99A5 ‘ Prove that there is a constant C such that, if p(z) is a polynomial of degree
1999, then

1
p(0)] < C /_ Ip(e)]da

P 10. ’Putnam 99B4‘ Let f be a real function with a continuous third derivative such that
f@), f'(z), f"(x), f""(x) are positive for all x. Suppose that f"(x) < f(x) for all z. Show that

f(x) < 2f(x) for all x.
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P 11. ’Putnam 98B4 | Let ay,,, denote the coefficient of ™ in the expansion of (1 + x + x2)™.
Prove that for all integers k > 0,

L
0< ) (—1)'ap_; <1

1=

el
e

[e=]

P 12. |Putnam 98B1 | Find the minimum value of

(041" - @4 ) -2
@+ 7+ @+ k)

for x > 0.

P 13. ’Putnam 96B2‘ Show that for every positive integer n,

2n—1
2n —1 2
e

P 14. ’Putnam 96B3‘ Given that {x1,z2,...,x,} = {1,2,...,n}, find, with proof, the largest
possible value, as a function of n (with n > 2), of

2n+1

2n+1) 2

<1~3-5--~(2n—1)<< -

T1T2 + X2x3 + - + Tp_1Tpn + Tply.

P 15. |Putnam 91B6‘ Let a and b be positive numbers. Find the largest number ¢, in terms of a
and b, such that

zpl-z o sinhuzr  sinhu(l —z)
a a

sinh u sinh u
for all w with 0 < |u| < ¢ and for all x, 0 < z < 1.

P 16. (CMJ*416, Joanne Harris) For what real values of c is

et +e " ca?
Y =
for all real x ¢

P 17. (CMJ420, Edward T. H. Wang) It is known [Daniel I. A. Cohen, Basic Techniques of
Combinatorial Theory, p.56] and easy to show that 2™ < (2:) < 22" for all integers n > 1. Prove

that the stronger inequalities
22n—1 m 22n
< < —
< ()<

P 18. (CMJ379, Mohammad K. Azarian) Let x be any real number. Prove that

Z sin(kx) Z cos(kx)
k=1

k=1

hold for all n > 4.

(1 —cosz) < 2.
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P 19. (CMJ392 Robert Jones) Prove that

(1 + ;) <xsini> >1 for x> \}5
P 20. (CMJ431 R. S. Luthar) Let 0 < ¢ < 6 < 5. Prove that
[(1 + tan? @) (1 + sin2 )] ? < [(1 + tan® 0) (1 + sin? 6)]= 7.
P 21. (CMJ451, Mohammad K. Azarian) Prove that

sec o

T cos® a + s’ a

sm a>7r

provided 0 < o < §

P 22. (CMJ446, Norman Schaumberger) If z, y, and z are the radian measures of the angles
in a (non-degenerate) triangle, prove that
1 1 1

msin — > xrsin — 4 ysin — 4 zsin —.
T x Y z

P 23. (CMJ461, Alex Necochea) Let 0 <z < § and 0 <y < 1. Prove that

V1—y%—cosz

r —arcsiny < ,
Y

with equality holding if and only if y = sinx.

P 24. (CMJ485 Norman Schaumberger) Prove that
(1) ifa>b>1o0rl>a>b>0, then at’ pa® > abab"b; and
(2) ifa>1>b>0, then a b < a¥ b

P 25. (CMJ524 Norman Schaumberger) Let a, b, and ¢ be positive real numbers. Show that

b\ (b+c\’ [c+a\°

apb c > a+ > p@ b c

ab’c > 5 5 5 > bc’a

P 26. (CMJ567 H.-J. Seiffert) Show that for all ditinct positive real numbers x and y,

<\/5+¢z7)2< r—y _wty

2 2sinh 22 T2

P 27. (CMJ572, George Baloglou and Robert Underwood) Prove or disprove that for
RS (—E E), cosh f < m

404
P 28. (CMJ603, Juan-Bosco Romero Marquez) Let a and b be distinct positive real numbers
and let n be a positive integer. Prove that

a+b< b’“”fl—a’”rl /a”+b”
2 “\V(n+1)b-0a)

7



P 29. (MM?®904, Norman Schaumberger) For x > 2, prove that

T =1 z—1
< 7< .
1n<x—1> _ZxQJ _ln<m—2>

P 30. (MM1590, Constantin P. Niculescu) For given a, 0 < a < 5, determine the minimum
value of o > 0 and the mazimum value of 8 > 0 for which

r\® _sinz z\ B
() =ma=(@)
a sina a
(This generalize the well-known inequality due to Jordan, which asserts that 2% <sinz <1 on
[0,3].)
P 31. (MM1597, Constantin P. Niculescu) For every x,y € (0, g) with x # y, prove that

n .
~ 1+4sina? 1+ siny?

<1n 1-— s%nxy>2 > 1n 1 —sinz? 1 —siny?
1 +sinzy

P 32. (MM1599, Ice B. Risteski) Given a > 8> 0 and f(z) = 2%(1 —2)%. If0<a<b<1
and f(a) = f(b), show that f'(a) < —f'(5).

P 33. (MM Q197, Norman Schaumberger) Prove that if b > a > 0, then (%)a > ‘Z—: > (
P 34. (MM1618, Michael Golomb) Prove that 0 < x < m,

T—x . T\ T—T
T <smx<(3——):ﬂ .
T+ ™ T+

)

e

P 35. (MM1634, Constantin P. Niculescu) Find the smallest constant k > 0 such that

ab n be N ca <ka+b+0)
a+b+2¢c b+c+2a cH+a+2b

for every a,b,c > 0.
P 36. (MM1233, Robert E. Shafer) Prove that if ¢ > —1 and x # 0, then

2 2
T 9 x
L <m(+a) < T
z< 120 xZ 240
I+az+5 [ I+x+4+5 ot La?

P 37. (MM1236, Mihaly Bencze) Let the functions f and g be defined by
w2 8x

=" and __
f(z) 272 + 8x2 and g(x) 472 4 a2

for all real x. Prove that if A, B, and C are the angles of an acuted-angle triangle, and R is its
circumradius then

a+b+c
f(A) + f(B)+ f(C) < iR

P 38. (MM1245, Fouad Nakhli) For each number x in open interval (1,e) it is easy to show
that there is a unique number y in (e,00) such that hITy = lnT‘T For such an x and y, show that
z4+y>xhy+ylnz.

P 39. (MM Q725, S. Kung) Show that (sinx)y < sin(zy), where 0 <z <7 and 0 <y < 1.
P 40. (MM Q771, Norman Schaumberger) Show that if 0 < 0 < T, then sin260 > (tan §)° 20,

< 9(A) +9(B) +9(0O).
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